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Preface

First of all, I would like to state that these notes are not a reference manual
for the topics dealt with. On the contrary, this is a very brief account of some
fundamental facts with some problems and examples of applications. The
reader interested in studying these subjects is strongly suggested to look at [4]
for probability theory, at [2] for decision making problems and at [3] for linear
programming.

The choice of the subjects and the order in which they are presented here fol-
low the syllabus of the “Quantitative methods for management” course offered
in the Graduate Program in Management at Università Bocconi and taught by
the author. Many topics were presented in the class with the help of various
software, mainly Microsoft Excel. However, I decided not to give any reference
to any software because the software world is changing at so rapid a pace that
it is almost impossible to keep up with it. Since the course was introduced in
2006, the instructors faced 4 different operating systems (Windows XP, Win-
dows Vista, Windows 7 e Mac OSX), 3 versions of MSExcel (2003, 2007, 2010),
2 versions of an add-in [5], not to mention some interesting “features” of the
combination of the above software (e.g., the different behavior the software has
depending on the language of the operating system). The inclusion of refer-
ences to software would have transformed this document in a neverending work
in progress or a “fabbrica del Duomo.” 1

These notes are the English translation of the original Italian lecture notes.
During the translation, I wish to thank Emanuele Borgonovo for his help in
revisioning the original text and in rewriting parts of it. The chapter in Influ-
ence Diagrams is largely based on the corresponding article he wrote for the
Encyclopedia of Medical Decision Making [1].

I would also like to thank again Francesca Beccacece and Enrico Moretto
for draft editing of the Italian version and for many suggestions; Alessandra
Cillo for her helpful comments and Gabriele Gurioli for providing me useful
material for the expected utility section.

Finally, I apologize in advance for any typographical errors. If you find
any, and I am sure you will, please list them in an email to be sent to fab-
rizio.iozzi@unibocconi.it.

1“The Duomo factory”. This phrase is used to point at never ending enterprises. The
“Veneranda Fabbrica Del Duomo” was estabilished in 1387 to build Milan’s Duomo and for
its maintenance. Construction work had lasted for centuries and the Cathedral was com-
pleted only in 1892 (!). Given its size and its rich and complex decorative and architectural
apparatus, the Duomo always needs work of restoration, consolidation, etc. The Veneranda
Fabbrica, therefore, has never been closed and it is still operating today.
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Exercises

The exercises in these notes are a selection of exam papers and in-class assign-
ments 2006–2009, all with well commented solutions.

Quickies

Each chapter ends with some “quickies”. Quickies are questions with very
brief answer, i.e. no more than one line. Quickies are neither quick questions
nor they have to be answered quickly: only the answers should be concise. In
general, all answers must be properly justified to get credit. For example, if
the question is

Is 10 a prime number? Why?

the right answer would be No, because 10 is the product of 2 and 5. On
the contrary, the following answers are to be considered wrong for the reasons
shown in parentheses:

• No, because it’s even (justification is wrong–2 is even and is prime)

• No, because is a multiple of 5 (justification is wrong–5 is a multiple of
itslef and is prime)

• No (justification is missing)

• No, because it can be divided by 5 and is greater than 9 (the first state-
ment is right but the second is not)

Milano, September 6, 2015
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Chapter 1

An introduction to probability

1.1 Probability in the real world

Everything in the world is uncertain, at least to a certain degree. Among
sciences, some of them have been given the attribute of “exact” as they share
a somewhat low degree of randomness, in the sense that in these contexts
predictions are quite good most of the time. This is in contrast with the so
called “social sciences”, where a higher degree of uncertainty is always present
and must be taken into account.

For example, consider a European entrepreneur who signed a contract to
buy an asset 6 months from now for, say, 1000 US dollars. As she usually pays
in euros, she many consider these two options:

• to immediately exchange some EUR into USD to get 1000 USD and to
save them until the payment occurs

• to save the equivalent of 1000 USD in EUR and exchange them just before
the payment

The consequences of both actions are unpredictable. If, during the 6 months,
the exchange rate USD-EUR increases (i.e. the equivalent in US dollars of
1 EUR increases) it is best to wait until the payment to exchange EUR in
USD, to save money. If, on the contrary, the exchange rate decreases, the best
thing to do is to exchange euros for US dollars now. The effect of the same
variations on the second option are opposite. Anyway, one understands there is
no optimal choice. Nonetheless, if the entrepreneur wants not to be subject to
risk, she could sign a contract with a bank that will exchange euros in dollars
at a prefixed rate at a prefixed time in the future. Such a contract is called
an option, and is quite useful for the entrepreneur: the bank guarantees the
delivery of the foreign currency in the future with a fixed price. This way, the
entrepreneur has transferred the risk to the bank and, for this reason, the bank
does not sign the contract for free: the contract has a price and that’s the price
for the risk. The need for computing the equivalent of a certain consequence
in the future has not disappeared; it has just moved from the entrepreneur to
the bank.

Situations like the previous one, usually share two common problems:

• the need to determine the probability that a certain event will occur;
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1. Probability

• the need to do some computations with the probability just found.

It is important to point out that these problems are different: the first, to
find the probabilities, always comes before the second.

The first problem, the determination of probabilities, is an extremely diffi-
cult task. Historically, the first attempt to solve it was the “classical”Classical probability theory of
probability. In the classical theory of probability, if all the results of an exper-
iment are equally likely, the probability of any event is the ratio of the number
of results favorable to the event to the total number of results. For example, if
the experiment is the determination of the EUR/USD exchange rate 6 months
from now, and we consider just three results, “less or equal to 1.2”, “greater or
equal to 1.4” e “between 1.2 and 1.4”, equally probable, the probability that
“the rate will be greater than or equal to 1.2” is 2/3, because there are only 3
possible outcomes and only 2 out of 3 are favorable to the event.

Following the “subjective”subjective view , the determination of the probability of an event
depends on the person who estimates it. For example, consider the launch of
a new product and the estimation of its probability of success: a young person
could judge the product too “traditional” and assess the probability as 40%. In
contrast, an experienced business man could positively view the “continuity”
of the product from the previous versions and estimate the same probability as
70%. Of course, both of them will base their estimates only on their respective
(different) knowledge, which in turn is made up of the past experiences of the
individual.

According to a third view, called frequentistfrequentist view , the determination of proba-
bilities is an experimental process where the experiment is to be done, in the
same conditions, an infinite number of times. The relative frequency of the
event in the sequence of experiments will “converge” to the probability of the
event. Although somehow intriguing, this view is in fact unfeasible. To repeat
an experiment in the same conditions again and again is impossible; in addi-
tion, even if the relative frequency will converge, the definition gives no clue
about when, i.e. there is no way to know how many experiments are to be
done to get a sufficient approximation of the required probability.

As every view has its own strengths and weaknesses, we will think of the
values of probabilities as being given “a priori”.

The second problem, to find how to use probability in computations, is a
technical one and can be solved in a formal way. What follows is a (very) brief
summary of a few facts from probability theory. The reader interested in going
into a greater depth into this topic could look at [4].

1.2 Formalizing probability: events and probability

Given an experiment whose outcome is uncertain, we define a “sample space”.

Definition 1.2.1 (Sample space). The set of all possible outcomes of an ex-
periment is called sample space, Ω.

Elements of Ω are called elementary events or atomic events1.

Definition 1.2.2 (Event). A subset A of Ω is called an event.

1to be precise, elementary events are not elements of the sample space, but singletons,
that is subsets of Ω with only one element
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1.2. Formalizing probability: events and probability

Here are three examples.

Example 1.2.1 (Tax reductions). You are a general contractor and are con-
sidering the government announcement that current tax reductions could be
extended for one or two years. The experiment relevant for you is the extension
of the reductions so

Ω = {“no extension”, “one year extension”, “two years extension”}

and the elementary events “no extension”, “one year extension”, “two years
extension”. The event corresponding to the English sentence

A = {“the extension has been approved”}

is
A = {“one year extension”, “two years extension”}

Example 1.2.2 (Share price). The experiment is to observe the price of a
company share at a certain time. In this case, Ω = {x ∈ R : x > 0}. Elemen-
tary events are all positive real numbers. The event “the price is less than 10”
corresponds to the subset {0 < x < 10}.

Example 1.2.3 (Production). The experiment consists in randomly choosing
a piece in a given production lot. There are two production plants, S1 e S2,
that produce the same number of pieces in the same time. Each piece can be
perfect or faulty. If C1 is a perfect piece coming from plant 1 and D1 is a
faulty piece from the same plant, and analogously for plant 2, we have

Ω = {C1, C2, D1, D2}.

The event “the piece is faulty” corresponds to {D1, D2}.

As events are subset of Ω, we recall some set theory definitions about set
operations. The following examples are related to the previous ones.

Definition 1.2.3. Ω, as a subset of itself is called certain event ; the empty
set, ∅, is called impossible event .

Events are subsets (of Ω) and therefore usual operations on sets can be
extended to events.

Definition 1.2.4. The complement of an event A is the event that occurs
whenever A does not occur and is denoted by Ā.

In example 1.2.1, if B is the event “tax reductions have been extended for
one year” then B̄ is

B̄ = {“no extension”, “two years extension”}.

Definition 1.2.5. Given two events A and B, event A∪B is called union (or
Boolean2 sum) of events A and B and occurs if A occurs or B occurs or both..
Usually, the sentence referring to the union of events is made up connecting
the two sentences referring to each event with “or”.

2from George Boole, 2 November 1815 - 8 December 1864, an English mathematician
and philosopher.
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1. Probability

In example 1.2.3, if A is the event “the piece is faulty” and B is the event
“the piece comes from plant 1” then A ∪B = {C1, D1, D2}

Definition 1.2.6. Given two events A and B, event A∩B is called intersection
(or Boolean product) of events A and B and occurs if both event A and B occur.
Usually, the sentence referring to the union of events is made up connecting
the two sentences referring to each event with “and”., the sentence referring to
the union of events is made up connecting the two sentences referring to each
event with “and”.

In the same production example, if A is “the piece is faulty” and B is “the
piece comes from plant 1” then A ∩B = {D1}

Definition 1.2.7. Two events A and B such that A∩B = ∅ are called mutually
exclusive. More generally, n events, X1, . . . , Xn, are said to be mutually
exclusive if Xi ∩Xk = ∅ for any i 6= k.

One can now give the abstract definition of probability3:

Definition 1.2.8 (Probability measure). A function P that assigns a real
number P (A) to any event A is a probability measure if

1. P (A) ≥ 0 for every A;

2. P (Ω) = 1

3. if A and B are events such that A∩B = ∅ then P (A∪B) = P (A)+P (B)

From the previous definition, a number of important consequences follow:

Theorem 1.2.1. If P is a probability measure and A is an event then:

1. P (Ā) = 1− P (A);

2. P (∅) = 0,

3. if A and B are events then P (A ∪ B) = P (A) + P (B) − P (A ∩ B); this
equation extends the third axiom to the case of non mutually exclusive
events.

4. if A implies B, i.e. A ⊂ B, then P (A) ≤ P (B)

A not rigorous proof of these results can be found using Venn diagrams.

1.3 Conditional probability

Any assessment of a probability is made using some information. With the
available data, the decision maker assigns each event a probability. If the
decision maker gets more, probabilities can change.

3we are consciously omitting the definition of an algebra of sets, given the introductory
level of these notes.
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1.3. Conditional probability

Example 1.3.1. The contractor in example 1.2.1, based on past experiences,
assigns a 40% probability to the event “tax reductions will be extended”. Then,
he knows that a draft of the extension is currently being written and so he in-
creases the probability of the event to 70%. The event “a draft of the extension
is being written” changed the probability of the event “tax reductions will be
extended” and the contractor, given the news, is likely to change his decisions.

Example 1.3.2. The owner of the production plants in example 1.2.3 started
a quality assurance process. An engineer is sent to inspect production lots.
Each lot is made up of the same number of pieces from both plants. The
inspector randomly extracts one piece from a lot to assess its quality. With no
other information, the probability that a piece is produced in plant 1 is 50%.
Further analyses show that plant 1 produces 1 faulty piece out of 10 while plant
2, being newer than plant 1, produces 1 faulty piece out of 50. The engineer
further inspects the piece and finds that is it faulty. Now the probability that
the piece comes from plant 1 is greater than before, because in a single lot the
production is the same for both plants but plant 1 is more likely to produce
faulty pieces. The occurrence of the event “the piece is faulty” changed the
probability of the event “the piece comes from plant 1”.

In both examples a change of probability assessments occurred: both sub-
jects gave an initial estimate of the probability of a certain event (prior prob-
ability ) and then, taking into account some new facts, changed the initial
estimate into a new one (posterior probability Prior and posterior

probability
. The new probability is called

“conditional probability”.

Definition 1.3.1 (Conditional probability). If P (B) > 0 the probability of A
given that B has occurred, is called “conditional probability of A given B” and
is equal to

P (A|B) =
P (A ∩B)

P (B)

Using the classical probability view, the previous formula is easily explained.
If there are, say, N possible outcomes of the experiment, the fact that B
has occurred reduces the number of possible outcomes to N × P (B), i.e. the
number of outcomes favorable to B. Of those outcomes, only N × P (A ∩ B)
are favorable to A and to B at the same time. The result then follows as a
classical computation of probability.

Example 1.3.3. Two dice are rolled. We would like to know the probability
of the event “the sum of the dice is greater than 6” (event A). If we assume
the dice are fair, the number of possible outcomes is 36, while those favorable
to A are 21 (see Figure 1.1). Therefore P (A) = 21/36 ' 58.33%. Now assume
we know that “the first die shows three” (event B). This fact changes our
estimate on the occurrence of A into P (A|B). Now the possible outcomes are
just six, and among them only three are favorable to A so P (A|B) = 50% (see
Figure 1.2).

The following theorem is useful in many applications.

Theorem 1.3.1. If A and B are events, then

P (B) = P (B|A)P (A) + P (B|A)P (A)

7



1. Probability
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Figure 1.1: Roll of two dice: 21 outcomes with sum greater than 6 (green); 15
remaining outcomes (black). The probability that the sum is greater than 6 is
21/36.
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Figure 1.2: Roll of two dice: if the first shows 3, sample space is shrunk to the
third row. There are 3 rolls with sum greater than 6 (green) and 3 with sum
less or equal to 6 (black). The probability that the sum is greater than 6 given
that the first die shows 3 is 3/6.
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1.3. Conditional probability

Substituting the total probability theorem into the conditional probability
formula we get a meaningful result, the Bayes theorem

Theorem 1.3.2 (Bayes). Bayes’ TheoremIf A and B are events and P (B) > 0 then

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|A)P (A)

Bayes’ theorem “swaps” the roles of A e B in the conditioning of probability.
In the LHS (Right Hand Side) B is given while in the LHS (Left Hand Side)
A is. The denominator is actually the probability of B, written as the sum of
conditional probabilities, accordingly to the total probability theorem 1.3.1.

To understand the meaning of Bayes’ theorem, we can go back to example
1.2.3. After a faulty piece is found, the engineer would like to assess the
probability that is comes from plant 1. If A is the event “the piece comes from
plant 1” and B is the event “the piece is faulty”, the unknown probability is
P (A|B).

The engineer knows two facts. Firstly, the two plants produce the same
number of pieces. So, P (A) = 0.5 and P (A) = 0.5, i.e. the probability that
a piece comes from plant 1 is 50% and the probability that is does not come
from plant 1, and therefore comes from plant 2, is obviously 50%.

The other known fact is the percentage of faulty pieces produced in the two
plants. Plant 1 has a 10% failure rate so the probability of a piece being faulty
given that it comes from plant 1 is 10%, i.e. P (B|A) = 0.1. Similarly, plant
2 has a 2% failure rate so the probability that a piece is faulty given that it
comes from plant 2 is 2%, P (B|A) = 0.02.

Using Bayes’ theorem we can get a precise value for the unknown probabil-
ity:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|A)P (A)

=
0.1× 0.5

0.1× 0.5 + 0.02× 0.5

=
0.05

0.06

=
5

6
' 83.33%

Given an event B, the set of all the probabilities “given B” are a prob-
ability measure themselves and therefore, if we measure mutually excluding
events, their sum must be 1: P (A|B) + P (A|B) = 1. The denominator is the
probability the a random piece is faulty, i.e. P (B) = 0.06

Here is another example showing a decision making problem.

Example 1.3.4. A hauler plans to buy a new set of trucks. Experience shows
that the probability that a truck would be working one year after its purchase
is 70%. If F is “the truck is working after one year”, then P (F ) = 0.7 and
P (F ) = 0.3.

Before buying the trucks, the hauler has them tested by the drivers who
will be giving a positive or negative opinion about the purchase. The hauler
knows that:

9



1. Probability

• when trucks have been found working after one year, 80% of the times
drivers gave positive opinions

• when trucks got damaged within a year, 90% of the times drivers gave
negative opinions

If + means “experts give positive opinion” e − means “experts give negative
opinion”, we can rephrase the previous facts using the formulas P (+|F ) = 0.8
and P (−|F ) = 0.9. We might also write, for example, that when trucks re-
mained working after one year, 20% of the times experts failed in predicting
their status, so P (−|F ) = 0.2. Similarly, when dealing with trucks that would
eventually be found broken, 10% of the times experts gave them positive opin-
ion, i.e. P (+|F ) = 0.1.

If we now ask the experts about the new trucks, we already know their
answer will modify our confidence in trucks’ life.

We are to compute the probability of F given one of the possible opinions.
If we get a positive opinion, then

P (F |+) =
P (+|F )P (F )

P (+|F )P (F ) + P (+|F )P (F )

=
0.8× 0.7

0.8× 0.7 + 0.1× 0.3

=
0.56

0.59
= 0.9491 . . .

and therefore P (F |+) = 0.0508 . . .
If, on the contrary, the opinion will be negative, then

P (F |−) =
P (−|F )P (F )

P (−|F )P (F ) + P (−|F )P (F )

=
0.2× 0.7

0.2× 0.7 + 0.9× 0.3

=
0.14

0.41
= 0.3414 . . .

and therefore P (F |−) = 0.6586 . . .
These are not surprising results, because experts are shown to be right most

of the times. Therefore, if they give a positive opinion we expect the probability
of the trucks to be working after one year to increase (from 0.7 to 0.9491). On
the other side, in the case of a negative opinion we expect the same probability
to decrease (to 0.3414).

Numeric results depend on the experts reliability.
For example, if we assume that when trucks are working after one year,

experts always give a positive opinion, we have P (+|F ) = 1 and, consequently,
P (−|F ) = 0. If we further assume that when trucks do not last for one year,
experts give a negative opinion, we have P (−|F ) = 1 and P (+|F ) = 0. If we
compute the probability in this new scenario, we get:

P (F |+) =
P (+|F )P (F )

P (+|F )P (F ) + P (+|F )P (F )

=
1× 0.7

1× 0.7 + 0× 0.3
=

0.7

0.7
= 1

10



1.3. Conditional probability

which implies P (F |+) = 0, and

P (F |−) =
P (−|F )P (F )

P (−|F )P (F ) + P (−|F )P (F )

=
0× 0.7

0× 0.7 + 0.9× 0.3
=

0

0.77
= 0

which implies P (F |−) = 1. The previous statements can be informally trans-
lated into English by saying that “experts are always right”: if they give a
positive opinion, the truck will work; otherwise the truck will not work. This
situation is actually impossible but it serves as an extreme case that can be
approached when probabilities are close to 1.

If only one of the two probabilities equals 1, e.g. P (+|F ) = 1, while the
other remains as in the original definition, P (−|F ) = 0.9, we get:

P (F |+) =
P (+|F )P (F )

P (+|F )P (F ) + P (+|F )P (F )

=
1× 0.7

1× 0.7 + 0.1× 0.3

=
0.7

0.73
= 0.9589 . . .

which implies P (F |+) = 0.0410 . . . , and

P (F |−) =
P (−|F )P (F )

P (−|F )P (F ) + P (−|F )P (F )

=
0× 0.7

0× 0.7 + 0.9× 0.3
= 0

which implies P (F |−) = 1. We know that when trucks are working, experts are
always right (P (+|F ) = 1) and give a positive opinion. However, when trucks
are not working (F ) experts give negative opinions only 90% of the times, thus
they give a positive (wrong) opinion in the 10% of the time. Thus, if we get a
positive opinion we are not sure the trucks are going to work or not (but we
expect the probability of them working to increase). On the contrary, if we get
a negative opinion we are sure the truck is not going broken within a year.

The other somewhat strange situation happens when both reliabilities equal
50%, P (+|F ) = 0.5 e P (−|F ) = 0.5. We have P (−|F ) = 0.5 and P (+|F ) = 0.5
and therefore:

P (F |+) =
P (+|F )P (F )

P (+|F )P (F ) + P (+|F )P (F )

=
0.5× 0.7

0.5× 0.7 + 0.5× 0.3
=

0.35

0.5
= 0.7

which implies P (F |+) = 0.3 . . . , and

P (F |−) =
P (−|F )P (F )

P (−|F )P (F ) + P (−|F )P (F )

=
0.5× 0.7

0.5× 0.7 + 0.5× 0.3
=

0.35

0.5
= 0.7

11



1. Probability

which implies P (F |−) = 0.3. In this scenario, prior probabilities, P (F ) = 0.7
and P (F ) = 0.3, equal posterior probabilities, P (F |+) = 0.7 and P (F |+) =
0.3. The experts’ opinion does not change our confidence in the trucks being
working after one year. This is easily explained if we consider that an expert
with a failure rate of 50% is not an expert at all! Anyone, by tossing a coin and
giving, for example, a positive opinion when it shows heads and a negative one
in the other case, has the same degree of reliability of an expert with a 50%
probability of failure. Thus, previous results are another extreme case, that in
which the given fact conveys no information at all. Typical applications fall in
between these two extreme cases.

1.4 Discrete random variables

Usually the consequences of an experiment are expressed by a number.

Example 1.4.1. In example 1.2.1, it is obvious that the contractor’s profit
will depend on the decision the government will make. For example, we could
assume that:

1. the probability that tax reductions will not be extended, A1, is 10%,
P (A1) = 0.1;

2. the probability that tax reductions will be extended by one year, A2, is
60%, P (A2) = 0.6;

3. the probability that tax reductions will be extended by two years, A3, is
30%, P (A3) = 0.3;

and that

1. if reductions are not extended, contractor’s profit will increase by 100000
euros;

2. if reductions are extended by one year, contractor’s profit will increase
by 200000 euros;

3. if reductions are extended by two years, contractor’s profit will increase
by 250000 euros;

The experiment consists in the extension of reductions. The profit increase
is a number X, called random variableRandom variable , and is bound to the result of the
experiment. The values X can take are usually denoted by the corresponding
lowercase letter with an index: x1 = 100000, x2 = 200000 e x3 = 250000.
Thus, to every event there is an associated probability and a value of a random
variable, summarized in the following table

Events A1 A2 A3

Probability (p1, p2, p3) 0.1 0.6 0.3
Values of X (x1, x2, x3) 100000 200000 250000

Whenever the random variable takes only a finite number of values, as in this
case in which there are only three values, the random variable is called discrete.
The table above is an example of a discrete probability distribution.

12
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1.5 Expected value of a random variable

Definition 1.5.1 (Expected value). If X is a discrete random variable and
pi is the probability that it takes the value xi, pi = P (X = xi), the expected
value of X is

E (X) =

n∑
i=1

xi × pi

Example 1.5.1. In example 1.4.1 the expected value of the random variable
X is

E (X) =

3∑
i=1

xi × pi = 100000× 0.1 + 200000× 0.6 + 250000× 0.3 = 205000

Note that, in general, the expected value of a random variable is not one
of the values the variable can take. One can informally explain this definition
assuming that the experiment could be repeated many times in the same con-
ditions (i.e. with the same probability distribution). In this case, when the
number of experiments is large, the mean value of the whole set of experiments,
i.e. the sum of the values taken by X divided by the number of experiments
that have been made, should be close to the expected value of X4.

1.6 Problems

Problem 1.6.1. An investment company has just bought 10 millions of euros
of buildings in downtown Milan. According to the company CEO, the prob-
ability that the value of the buildings will increase by 30% in the next two
years is 0.3, while the probability that the value will increase by 10% is 0.5.
Otherwise, the value of building will remain the same. What is the expected
value of the buildings after two years?

Problem 1.6.2. A company is planning an incentive travel to a tropical island
for its best customers. According to the company board the probability that
the travel will be a success is 80%. Two members of the company board are
going to go to the island before approving the planned travel. When they are
back, they will give an opinion about the place and its facilities. Past experience
shows that when the travel was a success, the testers gave a positive opinion
90% of the times. When it was a flop, the opinion was negative 80% of the
times. Now, the two members are on their way back. How can the probability
of a success change?.

1.7 Quickies

Question 1.7.1. A risky investment can result in a revenue of 1, 2 or 5 millions
euros. Could it be that the expected value of the investment is 6 M euros?
Why?

Question 1.7.2. Let P (A|B) = 0.4. Is it true, in general, that P (A|B) = 0.6?

4From a theoretical viewpoint, this statement should be made more precise and could
then be rigorously justified. The reader interested in this topic can see [4].
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1. Probability

Question 1.7.3. Let P (A|B) = 0.4 Is it true, in general, that P (A|B) = 0.6?

Question 1.7.4. Let A and B be two events with P (A) = 0.4 and P (B) = 0.3.
Could it be that P (A ∪B) = 0.8?

Question 1.7.5. Given two events A and B we know that P (A) = 0.4 and A
implies B. Is it possible that P (B) = 0.6?

14
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Decision under uncertainty
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Chapter 2

Introduction

2.1 Models for Managers

One of the first decision-making problems taught often at MBAs or manage-
ment specialization course to introduce decision analysis is the following (it
is now a classic). You are the owner of a racing team. It is the last race of
the season, and it has been a very good season for you. Your old sponsor will
remain with you for the next season offering an amount of $50000, no matter
what happens in the last race. However, the race is important and broad-
casted on television. If you win or end the race in the first five positions, you
will gain a new sponsor who is offering you $100000, besides $10000 or $5000
praise. However there are unfavorable running conditions and an engine failure
is likely, based on your previous data. You estimate the damage to a total of
-$30000. In addition, it would be very bad for the image of you racing team to
have an engine failure in such a public race.

What shall you do, run or withdraw?

When presented to professional decision-makers, some managers answer
immediately that they should run, because it is their job. Are they right or
wrong? It is completely right if your objective is ”to run” (It’s your job, after
all). Maybe a more articulare reasoning would be that if you continue running
and races don’t go well, then you won’t be able to run anymore, because you’ll
have no funds.

Now, is there a solution to this problem?

There is a set of problem which are much more complicated than this one.
For example, you are planning a space mission for NASA and you wish insights
on its risk and safety. Or you manage a vary large facilty and have to order
the right amount of spare parts. Or you are a human resource manager and
need to establish the proper set of incentives to your working team. Or you are
a policy maker and wish to make decision on the policy to adopt for fighting
climating change.

It is clear that solving it requires the right mix of managerial intuition,
competence (i.e., knowledge of the specific aspects of the problem) and ability.
However, these managerial skills are undoubtedly enriched by the utilization of
a decision-support model. In fact, managers and decision-makers benefit from
the utilization of decision-support models in virtually every field.

One of the learning objectives of this course is to help you in understanding
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2. Introduction

Figure 2.1: The process of decision making

what is a model, so that to lern how to use it. In other words, we cannot expect
too much out of a model, but we cannot even expect too little.

2.2 The decision process

The modern decision-making process is iterative, as described in Figure .
The manager faces a problem. Then, she can rely on her intuition and come

to a decision. This is probably the way you can follow in day-to-day practice.
However, there is a set of problems in which the decision-maker feels the need to
combine all her available information into a model. She then performs several
analyses of the model and uses the results to make a (possibly) better informed
decision.

The next quote is attributed to Frederick W. Smith, former CEO of the
Federal Express Corporation: ”By modeling various alternatives for future
system design, Federal Express has, in effect, made its mistakes on paper.
Computer modeling works; it allows us to examine many different alternatives
and it forces the examination of the entire problem”.

Now, we come to the question of what is a mathematical model for a manger.
From a scientific viewpoint, a managerial model is not different to any scientific
model. In this respect, a scientific model is an abstract representation of a
real situation. Through abstraction we identify the essential elements of the
problem and, when possible, associate these elements with mathematical laws.
If the set of equations we come up with is solvable, then the solution we find
becomes an important part of the information based on which we can make
our decision.

The risk associated with the abstraction process is to overlook important
elements of the problem. The ability of including the essential elements of the
problem without overlooking marks the difference between a good model and
a bad one. The abstraction processAbstraction process is in fact the actual creation of the model.
It consists of the “translation” of real things (persons, firms, rules, etc.) into
abstract mathematical objects (variables, functions, etc.). Every mathematical
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2.2. The decision process

object is bound to the real thing it represents and this binding is crucial: it can
provide useful insights to look into the results and to reduce the complexity of
the problem. The more faithful the “translation”, the more the model is close
to reality, the closer the conclusions we derive from it are to the real problem.
However, as with other types of translation, a “perfect translation”, i.e. a
perfect mathematical copy of the real world, does not exist. What we get is
a set of several models, each of them being imperfect/limited when considered
from some perspective.

The models described in these notes are optimization Optimization modelsmodels. They are
called decision making problems Decision making problems. The mathematical solution to these problem
helps the decision-maker to figure out the course of action that allows her to
come closer to reaching her goals.

In the next section, we deal with the fundamental tools developed for dealing
with decision-making under uncertainty.
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Chapter 3

Influence diagrams1

3.1 Introduction

Influence diagrams (IDs) are graphical tools for the representation and solution
of decision-making problems. By representation, one means the identification
of the decision-making problem elements. In particular, an influence diagram
reveals the probabilistic dependences among the uncertain quantities and the
state of information at each decision stage. By solution, one means the deter-
mination of the preferred alternative (best strategy selection) given the state
of information. Influence diagrams grant decision-makers the possibility of
representing complex decision-making problems in a thorough albeit compact
fashion. It is this strength over other representation techniques that have made
the use of influence diagrams widespread.

An ID is a acyclic graph consisting of nodes and arcs. Nodes Nodesare of three
types: decision, chance and value. Value nodes end the diagram. Decision
nodes represent a decisions, namely the selection among alternatives operated
by the decision-maker. The result of a decision-node is under the control of
the decision-maker. Chance nodes (also called event nodes) represent the out-
come of a statistical experiment (a random event) whose outcome cannot be
controlled by the decision-maker: it is uncertain. The graphical representation
of these nodes is displayed in Table 3.1.

We must emphasize here that IDs are a compact representation of the de-
cision problem. Thus, nodes “hide” their content: the available alternatives in
decision nodes or the possible outcomes of chance nodes are hidden below each
node.

Example 3.1.1. A transportation company must move some goods using an
airplane or a ship. The airplane is cheaper and faster than the ship. However,
a just started volcano eruption is jeopardizing air transport because volcanic
ashes could ground the airplane for days, forcing the delivery of goods to be
delayed. In this case, both the cost of the stocking of the goods at the airport
and the cost for the delay, could be greater than that of a ship transport, that
is not affected by the eruption.

In this example we have 3 nodes: one to represent the uncertainty about
the volcano; another to represent the decision that must be made (“ship or

1This chapter is largely based on [1].
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3. Influence diagrams

shape node type

Decision

Chance

Value

Table 3.1: Node types and corresponding shapes

airplane”) and the third representing the final value of the operation. See
Figure 3.1

ship or
airplane?

Cost Volcano

Figure 3.1: Nodes in example 3.1.1

Example 3.1.2. A physician must select the treatment for a patient. The
first stage of the treatment foresees to choose between cures A or B. The two
cures have a different efficacy, with their overall effect strongly dependent on
the patient’s response. After one week the physician re-evaluates the patient’s
conditions. Depending on the evaluation results, the physician has to decide
between continuing with cure A, switching to B or resort to a third cure, C.
The problem contains two (sequential) decisions.

The complete ID for this example is shown in Figure 3.2.
Decision nodes display the decisions to be taken at different stages of the

decision analysis problem at hand. A variable contained in a decision node
is under the control of the decision-maker, who selects the alternative that
maximizes the decision-maker’s preferences. In Figure 1, decision node “Cure
A or B” represents the first selection between cures A and B, the node “Cure
A, B or C” represents the selection between A, B and C. The second selection
is made after re-evaluation of the patient’s conditions.

Chance nodes represent variables or events whose knowledge or realization
is out of the control of the decision-maker. Chance nodes are sometimes re-
ferred to as uncertainty or event nodes. Each chance node contains all possible
realizations of the corresponding uncertain variable. Realizations are called
outcomes. In Figure 3.2, the chance node “Patient Condition” represents the
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3.1. Introduction

Cure A
or B?

Cure A,
B, or C?

Patient
condition

Patient
condition

after 1 week
Value node

Figure 3.2: Influence diagram of example 3.1.2

conditions of the patient after selection of A or B. If the analyst/decision-
maker considers that three possible states, namely “fully recovered”, “partially
recovered” and “worsened”, are possible, then the chance node will have three
outcomes. The decision-maker’s state of belief of the likelihood of the outcomes
is characterized by a corresponding conditional probability distribution.

Value nodes contain the decision-maker’s utility for each consequence. A
consequence is the end state of the world resulting as a combination of selected
alternatives and outcomes of uncertain events. Utility is a quantification of
preference and must be assessed consistently with the axioms of Decision The-
ory. Value nodes are occasionally referred to as utility nodes.

Arrows joining nodes in an influence diagram are called arcs. Arcs are
grouped into the categories of informational, and conditional and functional.

Informational arcs are arcs ending in a decision node. If the informational
arc stems from a chance node, then it indicates that the decision-maker is
aware of the outcome of the chance node at the moment the decision is made.
If an arc connects two decision nodes, then the decision-maker is aware of the
previously selected alternatives. Arcs connecting decision nodes are also called
no-forgetting arcs. Informational arcs imply time precedence. For this reason,
it is not possible to reverse the direction of an informational arc.

Arrows ending into chance nodes are conditional arcs. Conditional arcs
indicate the presence of a possible probabilistic dependence among the distri-
bution of the random variables contained in the two chance nodes that the
arcs link. We recall that probabilistic dependence is a weaker relationship than
causal dependence. Let X and Y be the two random variables represented
by the two chance nodes. Two cases are possible: X is probabilistically de-
pendent on Y or it is not. If there might be a probabilistic dependence, this
is displayed by the presence of an arc. The direction of the arrow shows the
state of information of the decision-maker, i.e., whether the decision-maker is
willing/capable of expressing the probabilities as P (X|Y ) or as P (Y |X). A
conditional arc does not necessarily correspond to time precedence. In fact, it
is always possible to reverse a conditional arc using Bayes’ theorem, provided
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3. Influence diagrams

that this operation is performed in consistent fashion. The strong assertion
is the lack of a conditional arc between two nodes: the random variables are
independent.

Finally, functional arcs are arcs that enter the final node of the diagram,
namely, arcs entering the value node.

The influence diagram in Figure 3.2 contains six arcs. The arc between
decision nodes “Cure A or B” and “Cure A, B or C” is an informational arc.
It denotes the fact that the physician, at the moment of the second decision,
is aware of whether cure A or B has been previously selected. The arc from
chance node “Patient Conditions” and decision node “Cure A, B or C” is also
an informational arc, denoting the fact that the physician is informed of the
patient’s conditions after cure A or B has been adopted. The arc between the
chance nodes “Patient Conditions” and “Patient Conditions after 1 week” is
a conditional arc representing the fact that the decision-maker considers the
outcomes of the second chance node, i.e., the conditions of the patient after the
revision of the treatment has been undertaken, dependent on the conditions of
the patient after the first cure A or B has been selected.

In an ID nodes are joined by arcsArcs . Arcs are the logical links between nodes.
Arcs are always oriented, i.e. they go from a parent node to a child node,
following the arrow on the arc. An arc can be:

• informational , if it ends in a decision node. The presence of an informa-
tional arc means that the entity represented in the parent is known at
the time the decision is made;

• conditional , if it ends in an event node. The presence of a conditional
arc means that the child event depend on the entity represented in the
parent.

• functional , if it ends in a result node.

In example 3.1.1 there are two functional arcs. The cost is directly influ-
enced by the outcome of the volcano node and, independently, by the decision
that has been made. The new ID is drawn in Figure 3.3

Ship or
airplane?

Cost

Volcano

Figure 3.3: Influence diagram for example 3.1.1

For now, the ID in Figure 3.3 has no quantitative information. In fact, as
we have seen, it refers to the first levels of IDs, namely graphical representation.
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To solve the decision-making problem, we need to complete the diagram with
the necessary numbers. These are:

• the numerical values of the outcomes in the end node (utilities, payoffs,
costs) and

• the conditional probability tables or probability distributions, to be as-
sociated with each node.

Let us start with the a probability distribution of the chance node. This dis-
tribution is assigned by the decision maker (subjective view) based on her
degree-of-belief about the outcomes of the events. For example, the decision
maker thinks that volcanic ashes may ground airplanes with a 60% probability.
Thus, the “Cost” node is associated with a conditional probability table with
the cost for each transpotation means and each possible event. If airplane cost
is 5000 euros normally and 12000 euros if the ashes ground planes and ship
cost is 8000 euros, the new ID is that of Figure 3.4.

Ship or
airplane?

Cost

Volcano
p(V ) = 0.6
p(V ) = 0.4

V V

ship 8000 8000
airplane 12000 5000

Figure 3.4: Influence diagram of example 3.1.1

3.2 Information

In example 3.1.1 the decision affects the cost of the transportation. The decision
maker is in the worst position, being unable to control the uncertainty of the
problem.

Let us assume that, before making any decision, the company takes a look
at the predictions about the volcanic activity in the near future. We now must
add another event node in the diagram, that of “Predictions”: the decision
maker takes note of the predictions and then decides. Thus, an informational
arc must go from the “Prediction” node to the “Ship or airplane?” node. From
a mathematical point of view, this changes the probabilities in the decision
process. If P is, say, the event “Predictions say the volcano is going to erupt”,
the relevant probability will be p(V |P ). Predictions changed the information
of the company and the probabilities must change accordingly.

Predictions are in turn affected by the volcanic activity: geologists study the
behavior of the volcano and then give their view about the future, Therefore,
there is a conditional arc going from the “Volcano” node to the “Predictions”
node (see Figure 3.5).
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Ship or
airplane?

Cost

VolcanoPredictions

Figure 3.5: ID of example 3.1.1 with predictions (imperfect information).

The ID in Figure 3.5 shows an imperfect informationImperfect information . Information (i.e.
knowledge of the predictions) is imperfect because predictions do not rule out
any of the possible outcomes of the future, but can decrease the randomness
for the decision maker. A synonym for imperfect information is sample infor-
mation, because in many cases predictions are based on sample observations.
For example, to get a prediction about the customer satisfaction for a new
product, a company can test the product with a small sample of people. The
answer the company gets is not that of the whole market but is a hopefully
good prediction of it.

If the company could wait for the volcano to erupt or not, the decision
will be the best possible one. The corresponding ID would be that of Figure
3.6. In this case, the arc from the volcano to the decision is an informational
one because in this scenario the company knows the outcome of the random
experiment (the eruption of the volcano) in advance. In this case we have
perfectPerfect information information.

With perfect information, the decision process does not contain any ran-
domness anymore and it reduces to an optimization problem. Even if the
perfect information scenario does not actually happen, it is nonetheless inter-
esting as an extreme case: the maximum advantage we can get from a sample
information can not exceed what could be gained in the perfect information
framework. We will return on this in chapter 4.

3.3 Iterated decisions

As a slight variation on the above situation, let us consider the position of a
decision maker who has no available information about the volcano, but knows
it can be obtained, at a certain cost. Under these circumstances, the decision
maker has to decide whether or not to wait for the predictions. Given all the
other data, this decision is obviously based on the reliability of the prediction.
The more the one who makes the prediction is reliable, the more it is convenient
to ask for predictions. Obviously, if the reward we get from the prediction is
less than what we pay for it, it makes no sense to go that way. This extreme
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Ship or
airplane?

Cost

Volcano

Figure 3.6: ID of example 3.1.1 with perfect information

case is that of perfect information, because no predictor could be better than
the one who knows the future in advance. On the contrary, if the predictor is
completely unreliable, it is useless to ask for predictions, and to pay for them.
Actually, we are often between these two extreme cases.

The ID representing this case is that of Figure 3.7. The informational arc
between the decision to ask for predictions and the decision on the means of
transport brings an important consequence: the “Ship or airplane?” node is
influenced by its parent, because the decision on the means of transport follows
that on the predictions. Given the cost of predictions, the value of the “Cost”
node depends also on the “Wait for predictions” node. Thus, we must add an
informational arc between the two nodes (see Figure 3.7).

3.4 Additional information on ID

One distinguishes three levels of influence diagrams: graphical, functional and
numerical. The graphical level displays nodes and arcs, evidencing probabilistic
dependence and the flow of information, i.e., the information available before
each decision (Figure 3.2). At the functional level one introduces the outcomes,
the conditional distributions and the alternatives of each chance and decision
node, respectively. The numerical level is the level at which the values of
the conditional probabilities and utilities are inserted. The insertion of the
numerical values is necessary for the solution of the decision-making problem.

Significant research on the solution of influence diagrams has then been
undertaken in the fields of computer science and operations research, and nu-
merous algorithms have been developed improving the efficiency of the original
ones. The availability of algorithms has made available commercial software
that allows decision-makers to implement and solve decision analysis problems
through their representation in the form of influence diagrams. In the original
work of Ronald A. Howard and James E. Matheson the solution of influence
diagrams is envisioned in a two step approach, through conversion of the in-
fluence diagram into the corresponding decision tree. A few years later, Ross
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Ship or
airplane?

Cost

VolcanoPredictions

Wait for
predic-
tions?

Figure 3.7: Influence diagram of example 3.1.1 with the decision on waiting for
predictions

D. Shachter proposes the first algorithm for direct solution of influence dia-
grams. The direct solution algorithm proceeds through arc reversals and node
elimination. These operations follow strict rules that allow not to distort the
calculation of the expected utilities and the flow of information. Such opera-
tions are called value-preserving. The four main types can be listed as follows,
according with the taxonomy of Joseph A. Tatman and Ross D. Shachter:
arc reversal, chance node removal through summation, chance node removal
by conditional expectation and decision-node removal by maximization. The
procedure foresees first the removal of barren nodes, followed by the iterative
application of the four operations, until the best strategy is identified.

Influence diagrams are often utilized in conjunction with decision trees.
Some commercial software allows users to first structure the model in the form
of an influence diagram and then to obtain the corresponding decision trees.
Decision trees allow to display the combinations of choices and outcomes that
lead to each consequence, thus providing a detailed description of the decision-
making problem. However, their size increases exponentially with the number
of nodes. Not all influence diagrams can be directly converted into a decision
tree and to one influence diagram there can correspond more than one decision
tree. The conditions that assure the possibility of transforming an influence
diagram into a decision tree are the single decision maker condition and the no
forgetting condition. The reader interested in these topics is referred to [1].
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3.5 Problems

Problem 3.5.1. For the next Fall–Winter season, a fashion company is setting
up the price list within the end of August. The main competitor will publish its
list price at the end of July. After both lists are published large-scale retailers’
orders will determine the final profit.

Draw the ID for this scenario.

3.6 Quickies

Question 3.6.1. How many types of node can appear in an ID?

Question 3.6.2. Can an informational arc end in an event node?

Question 3.6.3. Can a conditional arc end in an event node?

Question 3.6.4. An arc starts from an event node A and ends into an event
node B. What can be said about the probabilities in node B?

Question 3.6.5. You must decide whether or not to buy shares. The market
is highly unpredictable. Draw an ID about this scenario.
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Chapter 4

Decision trees

4.1 Introduction

A decision tree (DT) is one of the graphical tools for the representation and
solution of decision-analysis problems. Their are well known for their imme-
diacy, namely, their capability of displaying in a straightforward way all the
elements of a decision-problem. However, as they display all possible combi-
nations of decisions and events present in a decision-problem, their size grows
exponentially with the number of element in the diagram.

NodesFrom a mathematical viewpoint, a DT is a graph with 3 types of nodes:

• decision nodes

• event nodes

• result nodes

connected by branches. Branches emanating from decision nodes represent the
alternatives available to the decision maker. Branches originating in an event
node represent the possible outcomes of a random experiment. No branch
starts from any result node: result nodes are “end” nodes.

Every node has an associated value, according to the rules that also apply to
ID nodes. Each that will be explained below. A decision-node corresponds to a
selection, namely, a max operation. The decision-maker selects the alternative
that maximizes her utility. A chance node is characterized by an expectation
operation, namely, we will need to compute its expected value for solving the
diagram. Thus, chance nodes require that each branch is associated with a
probability to be assigned by the decision-maker.

Nodes in a DT are represented by different shapes, according to Table 4.1.
A DT must be read from left to right and from top to bottom.

Example 4.1.1. A consumer electronic company must decide whether to de-
velop a new product or not. In the next quarter, with no new product, revenues
are expected to be 350000 euros, with production costs at 50000 euros. If the
new product is developed, production costs raise to 120000 euros and revenues
depend on the success of the new product. If the product is successful, which
is 70% likely, revenues are expected to be 500000 euros. If the product is not
successful revenues will be 300000 euros.
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shape node type

rectangle Decision

circle Event

triangle Result

Table 4.1: DT: node types and their graphical representation

380000

180000

300000

new
product

−120000

no
new

product

−50000 +
350000

succe
ss

p =
0.7

500000

no success
p =

0.3300000

Figure 4.1: DT of example 4.1.1.

There are 5 nodes in this example: one is the decision node (“develop?”),
one is the event node (“success?”), and the remaining three are the result of
the decisions in the three cases (no new product, new successful product, new
unsuccessful product). The event node is linked to the decision about the
development. In Figure 4.1 we put all the relevant data. To compute the value
of result nodes, values on the arcs have been added. For example, 380000 is
the sum of the “new product” arc and the “success” arc.

To evaluate a DT we must compute the value of all intermediate nodes in
the tree and then compute the value of the root node. This is done by “folding
back” (or “roling back”) the tree. The algorithm, in fact, starts from result
nodes and ends at the root node. The value of a node is given by the following
rules:

• the value of an event node is the expected value of its outcomes
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Figure 4.2: DT of example 4.1.1 with numeric values.

• the value of a decision node is the maximum value of the nodes of its
options

In example 4.1.1 there’s only one event node with two outcomes: success,
worth 380000 with probability 0.7, and no success, worth 180000 with proba-
bility 0.3. Thus, the event node is worth

380000× 0.7 + 180000× 0.3 = 320000

Now we can compute the value of the decision (root) node. The decision has
two options: “new product”, worth 320000, and “no new product”, worth
300000. Therefore, the decision node is worth 320000 and the decision to be
made is to develop the “new product” (see Figure 4.2).

In a tree with decision nodes and result nodes only, the decision is simple:
choose the maximum among all the alternatives. In this case, one is dealing
with a problem with decision under “certainty”. One simply chooses the pre-
ferred alternative. A typical case is the choice of the taste of an icecream or,
when you go shopping, the purchase of, say, a new purse. It might require a
while to think of the icecream-taste or of the type of purse to buy, but it is
only a question of preferences. Provided that you have the necessary amount
of money, there is no doubt that the icecream will be of the taste you ordered.

Conversely, if there are event nodes, you are in the presence of uncertainty.
To evaluate the problem, the theory states that the decision maker has to
convert the uncertainty associated with the event represented by the node into
a number. This is done by using the expected value of the alternatives. Thus,
the decision-maker is selecting the decision that maximizes her “expected”
payoff (or, in a more general sense, utility.)

Here, it is important to recall that the expected value is not necessarily a
value of one of the alternatives, i.e. the event node value is generally not one
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of the possible outcome of the experiment. In the example above, there is no
way to get a profit of 320000 euros: either we get 380000 or 180000 euros. A
possible meaning for the expected value is this: if we were to repeat the decision
many times in the same conditions on the average we would get 320000 per
decision.

4.2 Sensitivity analysis

A mathematical model can be generally seen as a series of mathematical ob-
jects (equations, inequalities, etc.) that processes a set of variables (called
exogenous) to produce an output. The output is called endogenous variable
or decision-support criterion, depending on the applications. When the exoge-
nous variables are assigned numerical values, they become “parameters” of the
model. The value of the model output changes if we change the values of the
parameters.

The above-considerations hold for generic models and decision-support tools.
IDs and DTs are part of this family and make no exception. In example 4.1.1
the values for cost, revenues and the probabilities are numbers given by the
decision maker. Using these numbers, a well defined algorithm produces the
final result.

However, in real world situations, it is very unlikely that decision-makers
can assign a certain value to all exogenous variables. Most of the values that
appear in a mathematical model are known within a given tolerance. For
example, in assessing the revenues of the new product the amount of 500000
euros could be the base case of estimates that range from 100000 to 750000.
How do we deal with this variability?

The answer is to perform sensitivity analysis. Sensitivity analysis tools are
a set of methods that have been developed in the management sciences and in
the scientific literature to help decision-makers making the most out of their
mathematical models.

The sensitivity analysis methods we are going to examine in this course re-
spond to some of the questions one can ask to the model. They have, therefore,
the purpose of providing an introduction to sensitivity analysis. Many recent
and much more sophisticated methods are available.

The first method we examine is called “one way” sensitivity analysis. It
consists of inspecting the output of the model as one-factor-at-a-time is varied
within its variation range. The remaining factors are held fixed at their base
case value.

This type of analysis points out the boundaries within which the solution
is still the best and, if the solution changes, the way it changes.

We proceed this way. First, the estimate of the revenues for the new product
becomes a variable r. If r is greater than 500000 euros then it will be optimal
to develop the new product. However, if r is small enough the optimal choice
would be not to develop the product because revenues will be less than the
increased cost (120000 euros). The expected value as a function of r is

(r − 120000)× 0.7 + 180000× 0.3 = 0.7r − 30000

To develop the new product we need this quantity to be greater than that on
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4.2. Sensitivity analysis

Figure 4.3: The red line represents, in the interval 0 ≤ r ≤ 600000, the decision
value with respect to the revenue r.

the other branch of the tree, which is 300000, i.e.

0.7r − 30000 > 300000.

We finally get r > 471428 euros. Thus, even if with predicted revenues of
500000 euros it is optimal to go for the new product, a decrease of less than
30000 euros changes the optimal choice to keeping the status quo. The plot in
figure 4.3 shows the problem.

In a similar line of thought, we could consider the probability of success as
a variable (leaving other parameters untouched). In the original form of the
problem, the probability is 70%. We expect the new product to be optimal
if that number is close enough to 1. If the probability of success is small the
expected values of revenues will be small too and they will be less then the
cost of the development. If p is the probability of success then the value of the
event node is

380000p+ 180000(1− p) = 180000 + 200000p.

To be greater than the other alternative, we should have

180000 + 200000p > 300000

i,e, p > 0.6. If the probability of success exceeds 60% it is better to develop
the new product; otherwise, one the company should keep on with the current
production. Also in this case the plot in figure 4.4 shows the problem.

35



4. Decision trees

Figure 4.4: The red function represents, in the interval 0 ≤ p ≤ 1, the decision
value with respect to the probability p.

To summarize

With the data in the original problem, it is optimal to develop a
new product with an expected profit of 320000 euros. In addition:

• if, keeping the other parameters unchanged, the probability of
success changes but remains over 60%, the optimal solution is
the same as before;

• if, keeping the other parameters unchanged, estimated rev-
enues change but remain over 471428 euros, the optimal solu-
tion is the same as before;

• in all other cases, a more detailed analysis is needed.

To go on with the analysis, we should consider the variations of the two pa-
rameters at the same time. A further insight could be the extension of this
analysis to all the parameters in the model. These tasks are computationally
complex and can be done only with the help of a computer and a dedicated
software.

4.3 Information

An integral concept of any decision analysis is the value of information. The
decision-maker might (and should) ask the question of what elements in the
decision-making problem are worth further investigation and/or if there is some
essential information she should get for making a “better-informed” decision.
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4.3. Information

Maybe the arrival of new evidence can make her change her mind about the
problem. However, information has a cost and she might be willing to pay a
maximum amount in order to collect the new evidence. How much should she
afford?

The answer to this question is obtained by appraising the value of informa-
tion. We are going to discuss this concept, as usual, by means of an example.
However, before starting, we state a short premise. Information is obtained by
consulting a source. This source can be perfectly reliable or imperfect. In the
first case, one talks about the expected value of perfect information (EVPI),
in the second by the expected value of sample information (EVSI). As we are
to see, EVPI can be seen as a special case of EVSI. Also, EVPI should always
be greater or equal to EVSI: we are willing to spend more for perfect than for
imperfect information.

Example 4.3.1. Let us assume that the decision-maker wishes to get addi-
tional information on the acceptance of the new product with a market research
test. Let S be the event “the product is successful” and T be the event “the
research test was positive”. Let us assume that each time the product was suc-
cessful, the test gave a positive answer with probability 80% while when the
product was not successful, the test gave a negative answer with probability
90%, that is

P (T |S) = 0.8 P (T |S) = 0.9

and consequently

P (T |S) = 0.2 P (T |S) = 0.1;

Moreover, we know that

P (S) = 0.7 P (S) = 0.3.

The decision tree in the new configuration is that of Figure 4.5.

To compute the values on the tree we must compute the relevant probabil-
ities. From theorem 1.3.1 we have

p(T ) = p(T |S)p(S) + p(T |S)p(S) = 0.8× 0.7 + 0.1× 0.3 = 0.59

and

p(T ) = p(T |S)p(S) + p(T |S)p(S) = 0.2× 0.7 + 0.9× 0.3 = 0.41

(p(T ) + p(T ) = 1). From theorem 1.3.2 we have

p(S|T ) =
p(T |S)p(S)

p(T )
=

0.8× 0.7

0.59
=

56

59
= 0.9491 . . .

and

p(S|T ) =
p(T |S)p(S)

p(T )
=

0.2× 0.7

0.41
=

14

41
= 0.3415 . . . ;

we can now compute

p(S|T ) = 0.0509 . . . p(S|T ) = 0.6585 . . .
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Figure 4.5: DT of example 4.3.1.

All the probabilities are known and we can finally compute the value of the
tree as in Figure 4.6.

The new value for the root node is 341193.8 euros, greater than that of 4.2.
In fact, in the new scenario the test research gave information about the new
product and this information increased the value of the entire tree. The increase
is measured by the difference between the root nodes: 341193.8 − 320000 =
21193.8. This is the expected value of sample informationExpected value of sample

information
.

The information is partial, because the test is reliable but could give incor-
rect answers(P (T |S) and P (T |S) are both less than 1). The perfect information
scenario would be that in which the decision about the production logically fol-
lows the completely predictable outcome. It is as if a magician could give a
perfect view of the future and, based on the magician information, the decision
maker solves the problem. The perfect information DT is shown in Figure 4.7.

The perfect information value of the root node is 356000 euros and to get
it we need perfect information. Thus, this is the maximum we can get for
this problem. The difference between the root node in the original problem,
356000− 320000 = 36000 is the expected value of perfect informationExpected value of perfect

information
.

If information is free, it is obvious that we should include it in the tree
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Figure 4.6: AD of example 4.3.1 with sample information.

and increase the value of the root node. If information is available at a cost,
it makes sense to compare its cost with the benefit we get from it. If, for
example, the cost of the market research in example 4.3.1 is 15000 euros, then
we should do the research because there is a 21193.8 euros increase in profits,
so the balance is positive. If there are more sources of information, each of
them should be compared with its cost and we expect that the more expensive
they are the more they are reliable, as the give a greater profit.

Even if the cost of information is not known, the decision maker can estab-
lish an upper bound for that cost. As the value of perfect information is 36000
euros, any information source that is more expensive than that should not be
considered, because the cost would be greater than the benefit.

4.4 Problems

Problem 4.4.1. A pharmaceutical company has a patent for a molecule that
could be effective in treating a certain disease. The cost of research for that
molecule is 10 millions euros. The probability that the molecule is actually
effective is only 10% but if it is so, revenues will grow to 200 millions euros.
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Figure 4.7: DT for example 4.3.1 with perfect information.

The other option is not to do any research with no cost and no revenues.

1. Draw a decision tree and find the best decision;

2. compute the value of perfect information;

3. before making a decision the company can ask an expert about the healing
properties of the molecule. The expert can give a positive or negative
opinion. If the molecule is successful, the probability that the expert
will give a positive opinion is 95%, while if the molecule is not effective,
the probability of a negative opinion is 85%. Draw a new decision tree
including the expert opinion and the value of sample information. If the
expertise costs 7 millions euros, should we ask for it?

Problem 4.4.2. A company is trying to decide whether to bid for a certain
contract or not. They estimate that merely preparing the bid will cost 10000
euros. If their company bid then they estimate that there is a 50% chance that
their bid will be put on the “short-list”, otherwise their bid will be rejected.
Once “short-listed” the company will have to supply further detailed informa-
tion (entailing costs estimated at 5000 euros). After this stage their bid will
either be accepted or rejected.

The company estimate that the labor and material costs associated with
the contract are 127000 euros. They are considering three possible bid prices,
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namely 155000, 170000 and 190000 euros. They estimate that the probability
of these bids being accepted (once they have been short-listed) is 0.90, 0.75
and 0.35 respectively.

What should the company do and what is the expected monetary value of
your suggested course of action?

Problem 4.4.3. A call center employee spends part of his work time betting on
the Internet, instead of contacting potential customers. This way the company
looses 500 euros per week. The call center manager has the right to fire him
without justifications. In this case, the company will get back the lost revenue.

Another opinion is to wait for the employee to be caught in the act. As
this is a violation of the job contract, besides being fired, the employee must
refund (and the company gains) 400 euros.

Server logs show that the employee bets for 60% of his work time so the
probability of finding him playing is 0.6.

• Draw an ID for the problem.

• Draw the corresponding DT.

• What should the manager do? To wait o fire the employee immediately?

A software allows to log all the Internet connections going through the call
center. According to the documentation, the software could provide a solid
evidence against the employee.

• Draw a decision tree and find the maximum price to pay for such a
software.

Further investigations show that, for privacy concerns, the above software
is illegal. The manager, therefore, could interview some of the employee’s
colleagues to get an idea of his future behavior. However, time lost in interview
is a loss (150 euros) and the colleagues opinions are, obviously, biased. If the
employee is actually betting, they will tell the truth only 50% of the times,
while if he does not bet they will be truthful 95% of the times.

• Should the manager interview the employee’s colleagues?

4.5 Quickies

Question 4.5.1. An event node has two alternatives, worth 10 and 20 (with
given probabilities). Can the node be worth 30?

Question 4.5.2. An event node has two branches: 10 with probability p and
20 with probability 1− p. How much is p if the value of the node is 16?

Question 4.5.3. Considering the DT in Figure 4.8 can we point out the op-
timal decision?

Question 4.5.4. Considering the DT in Figure 4.9 can we point out the op-
timal decision?

Question 4.5.5. Considering the DT in Figure 4.10 can we point out the
optimal decision?
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Figure 4.9: DT for quicky 4.5.4.

42



4.5. Quickies

500

400

500

optio
n 1

option
2

event 1

event 2

Figure 4.10: DT for quicky 4.5.5.
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Chapter 5

Utility

5.1 Risk attitude

Let us consider the following example.

Example 5.1.1. A person has the opportunity to change his job. If he changes
his job there is a 50% chance that the new job will be highly rewarding and
his annual income will increase by 30000 euros; otherwise, he will get the same
salary he gets now. If he does not change his job, his salary will increase by
10000 euros.

This situation is represented in Figure 5.1.
If we compute the value of the root node using the expected value we

find the optimal choice is to change job. However, a real person facing this
opportunity might take a different approach. To analyze all possible attitudes,
let the certain salary increase (the one that he gets if he does not change) be

15000

30000

0

10000

change

does not change

rew
ard

p =
0.5

no rewardp =
0.5

Figure 5.1: DT for example 5.1.1.
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x. To make a further abstraction, let us assume this is a lottery (i.e. a random
variable) where the prize is 30000 euros and the probability of winning is 50%.
For what value of x the decision maker is indifferent between x and the lottery?

The answer depends on the decision maker. Let us assume there is a person,
A, for whom x = 12000. A judges equally to get 12000 euros or to participate
in the lottery. A knows that the expected value of the lottery is 15000 euros,
but is willing to waive 15000 − 12000 = 3000 euros to get 12000 euros for
sure. Using a proper mathematical terminology, 12000 euros are the certainty
equivalentCertainty equivalent of the “lottery”. As the lottery is, in fact, a random variable X, the
certainty equivalent is usually denoted by a function of X, z(X).

A is risk averserisk aversion . Facing an uncertain alternative with expected value 15000
euros, A would rather give up and “pay” 3000 euros to change the uncertain
option with the certain amount. 12000 euros is the minimum price for which
A would sell the ticket of the lottery. The difference between the expected
value of the lottery and its certainty equivalent is the risk premiumRisk premium . If the risk
premium is positive, the decision maker is risk averse.

Another person, B could think that x = 20000. This person “loves” un-
certainty: to have him sell the lottery ticket we need 5000 euro more than
the lottery expected value. B is said to be “risk seeking”Risk seeking . For a risk seeking
person, the risk premium is negative.

A third person, C, for whom x = 15000 would be called risk neutralRisk neutrality . C’s
risk premium is 0. C is a decision maker who completely agrees with the
expected value assessments.

So, from a risk attitude viewpoint, the analysis in the previous chapters was
done as if we were risk neutral people. Psychological and economical studies
show that many people are risk averse, especially in business matters. Changing
the point of view could possibly change the optimal decisions. In the previous
example, A would rather get 12000 euro and stay with the company instead of
changing his job. In the 20th century, von Neumann and Morgenstern proposed
the expected utility theory.

5.2 Expected utility

In the expected utility theory the subject must be able to order a set of random
variables according to his preferences. We will assume these random variables
take values in an interval [a, b] ⊂ R. If the subject follows some basic re-
quirements, known as von Neumann and Morgenstern axioms (vNM), it can
be shown that it exists a positive function u : [a, b] → R such that a random
variable X is preferred to Y if and only if E (u(X)) > E (u(Y )). The function
u is called utility function, and depends on the person making the judgments.
The number E (u(X)) is called expected utility of X.

Everyone who follows vNM axioms has an associated utility function that
describes his preferences: faced with two alternatives, the decision maker chooses
the option with the greatest expected utility. The principle guiding the choice
is that of maximization of expected utility criterion (MEU). Under very unre-
strictive hypotheses, u is a strictly increasing continuous function in [a, b] and
thus has inverse. The inverse function, u−1, is strictly increasing and therefore

E (u(X)) > E (u(Y )) if and only if u−1(E (u(X))) > u−1(E (u(Y )))
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Figure 5.2: Exponential Utility with different values of R.

As for any random variableX the certainty equivalent z(X) is z(X) = u−1(E (u(X))),
we can rewrite the previous equation in this way:

E (u(X)) > E (u(Y )) if and only if z(X) > z(Y ). (5.1)

The MEU criterion is equivalent to maximizing the certainty equivalent (MCE).
If the subject is risk neutral we have E (X) = z(X), and the above equation
becomes

E (u(X)) > E (u(Y )) if and only if E (X) > E (Y )

which is the maximum expected value criterion (the one we used in the previous
chapters). When the subject is risk averse one must use 5.1 and is bound to find
the function u corresponding to that subject. Expected utility theory shows
that a subject is risk averse if and only if its utility function is concave. As a
model for utility functions, the family of functions

u(x) = 1− e−x/R

has been widely accepted. It is called “exponential utility”. The parameter
R > 0 is called risk tolerance. The graph of u(x) for some values of R is shown
in Figure 5.2.

The larger R, the less concave is the curve, the closer it is to a straight line.
Exponential utility functions family has these features:
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• to find one member in the family only one number is needed, R;

• a quantity called Arrow-Pratt measure of absolute risk aversion defined
by −u′′/u′ is a constant. This roughly means that the subject behavior
against risk does not depend on the amount of the lottery.

• exponential utility is defined over [0,+∞) with range [0, 1). As it is, it
is not immediately fit for any problem. If w is the worst outcome of the
problem we should modify u to get u(w) = 0. Geometrically, we need
to horizontally displace the graph in such a way that the intersection
with the x axis is x = w and not x = 0. To get this, we can put
u(x) = 1− e−(x−w)/R.

• once u(x) is known, to compare certainty equivalents we need to get z(x)
and thus to invert u. This is easily done with the exponential utility
function because

u−1(x) = −R ln(1− x)

Going back to the first example, if the person has an exponential utility
function with R = 15 his utility function is

u(x) = 1− e−x/15

and the expected utility of random variable X in thousands of euros is

0.5u(30) + 0.5u(0) = 0.5
(

1− e−30/15
)

= 0.432332

with a certainty equivalent of

z(X) = u−1(0.432332) = −15 ln(1− 0.432332) = 8.493287

smaller than 10, the (certain) increase without changing job. So this person
would rather not to change his job. Note that if R increases (i.e. the risk
tolerance increases), the risk aversion decreases and the optimal decision could
change. If R = 21 the certainty equivalent would be 10.04466, pointing to the
change job alternative.

To summarize, the introduction of a utility function changes the value of
nodes in a DT and could possibly lead to different decisions. To help the
decision process, many software give the user the option to use utility function
specifying its parameters and computing the new values.

5.3 Problems

Problem 5.3.1. Consider example 4.1.1 with all the amounts expressed in
thousands of euros. With the help of a computer, point to the optimal decision
for a subject with exponential utility function depending on the value for the
risk tolerance.
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5.4 Quickies

Question 5.4.1. A lottery ticket wins 100 with probability 30%. If for a
person A the certainty equivalent of this lottery is 20, how can we describe A’s
attitude toward risk?

Question 5.4.2. A risk averse person buys a lottery ticket that wins an
amount x with probability 1%. The ticket costs 1 euro. If the person acted
rationally, could x be any number?

Question 5.4.3. Given a utility function u =
√
x and a choice between two

alternatives 10 e 20 with probabilities 0.3 and 0.7, compute the certainty equiv-
alent of the choice.

Question 5.4.4. An insurance broker has to make his last call for today to
try to sell a life insurance plan. He has two potential customers, both the same
age and in good health. Their preferences are well modeled by an exponential
utility function. They only differ for the value of R. Who should the broker
call?

Question 5.4.5. Another way to see the preference for 10000 euros instead of
the job change in example 5.1.1 is to think of a person who assigns a different
value for the probability of the “lottery” (here represented by the reward in the
new job). How shall one change probabilities of the two alternatives to decide
for the current job?
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Chapter 6

Linear programming

6.1 Some definitions

Linear programming (LP) is a mathematical method originally developed to
allocate limited resources among competing activities in an optimal way.

Limited resourcesLP considers problems with limited resources. The word “resource” should
have a broad meaning, referring not only to raw materials, etc., but also to
labor hours, people, money, space, etc. Being limited is a common feature of
many LP models (e.g. a machine can work for no more than 8 hours per day).

Competing activitiesActivities that need resources are typically competing, in the sense that
they use the same resources (e.g., if the machine is making a certain product,
it can not make a different product at the same time).

Optimal allocationAllocation of resources is the act of programming activities, i.e. the con-
struction of a plan that says what is done and how (e.g., the machine will work
on product A for 5 hours and then on product B for 3 three hours). Alloca-
tion should be optimal, i.e. it should maximize or minimize a certain function,
called objective function.

Linearity“Linear” means that all mathematical objects in this part of these notes
are linear expressions, i.e. first degree equation and inequalities in the decision
variables. This in turn means that all the quantities are additive, that is the
quantity corresponding to the sum of two levels of a resource is the sum of
the level of the two resources. For example, we will assume that if a machine
requires 2 hours to process a unit of a certain product, then it will need 2k
hours to process k units of the same product. It’s easy to see that, generally
speaking, this is not an easy requirement to meet. When this happens, the
model must be written using non linear equations and inequalities. We will
not deal with such kind of problems.

In the following paragraphs we will build a LP model by defining its three
main parts: the decision variables, a system of constraints and an objective
function. We stress the importance of this approach: one must always define
these objects before even trying to look at a solution.

6.2 A LP problem

Example 6.2.1. A chemical company produces 4 types of reagents, R1, R2,
R3 and R4, with 3 machines, M1, M2 and M3. Table 6.1 shows the time (in
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R1 R2 R3 R4

M1 3 4 7 1
M2 5 7 1 1
M3 1 1 2 1

Table 6.1: Time consumption for each machine for 1000 liters of reagent

revenue (euros)

R1 6.2
R2 3.2
R3 18
R4 2

Table 6.2: Revenues for each liter of reagent sold

hours) needed by each of the three machines to process 1000 liters of reagent.
For example, to get 1000 liters of R1, M2 mus work for 5 hours.

The company owns 3 machines of type M1, 4 of type M2 and one of type
M3. Each machine can work for no more than 100 hours per week.

Every week, the company must produce at least 10000 liters of each of the
reagents R2, R3 and R4.

The revenues from the selling of 1 liter of reagent is shown in Table 6.2 and
the company is sure to sell the whole weekly production.

The company would like to plan the weekly production of the reagents in
such a way as to maximize its revenues.

Decision variables

The starting point in the resolution of a LP problem is the definition of the
decision variables. These variables measure the resources to be allocated to
the activities in the problem. The number of decision variables depend on the
problem.

In example 6.2.1 what the decision maker is to decide is the production plan,
the quantities to be determined are the liters of each reagent to produce. Thus,
there are 4 decision variables: R1, R2, R3 and R4. However, before going on,
we should point out that within a given problem, each decision variable should
satisfy a certain number of preliminary constraints.

As R1, R2, R3 and R4 represent quantities of a certain physical asset they
are to be non negative numbers. This kind of constraint is often present in LP
problems. Note that the zero value is usually acceptable as it represent the
missing of that resource from the plan.

What are the units of measure of the decision variables? Sometimes the
choice is obvious but in particular cases, as that of the example 6.2.1, the
answer might not be unique. In fact, we could measure reagents in liters or, to
follow Table 6.1, in thousands of liters.

Should we consider only integer numbers or also floating point numbers
for the variables? If we use thousands of liters as units, we are forced to use
floating point variables, because it should be possible to produce, say, “3.1415
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thousands of liters”, approximately 3141 liters and a half. The same can be
said even if we take liters as units because, ideally, the quantities measured by
the variables are indefinitely divisible. However, in some case, as we shall see
in section 8.2), this condition is not met. When, for example, decision variables
represent the number of people employed in a given activity, it is obvious that
these numbers should be integers and can not be floating point numbers.

To make a choice, we state that R1, R2, R3 and R4 will be the number of
thousands of liters of reagent and therefore will take non negative real values,

Ri ∈ R, Ri ≥ 0, i = 1, 2, 3, 4.

Constraints

As we deal with limited resources, decision variables are to be constrained. We
already know that they can not be negative. However, any LP problem will
usually contain other restrictions that, mathematically, will be expressed as
equations and inequalities in the decision variables.

In the statement of the problem it is said that “Every week, the company
must produce at least 10000 liters of each of the reagents R2, R3 and R4. ”
The mathematical translation is made up of three inequalities:

R2 ≥ 10

R3 ≥ 10

R4 ≥ 10

as variables represent thousands of liters.

Other constraints come from the limited number of machine hours. Machine
M1 is available for no more than 300 hours. Every thousand of liters of reagent
1 uses M1 for 3 hours; thus, if the production plan states we are to produce R1

thousands liters of reagent 1, we will use machine 1 for 3R1 hours. Similarly,
for reagent 2 we will use machine M1 for 4R2 hours, for reagent 3 we will use
machine 1 for 7R3 hours and for R4 hours for reagent 4. Summing up, for a
production plan of R1, R2, R3 and R4 thousands liters, machine M1 us used
for 3R1 + 4R2 + 7R3 +R4 hours. This sum should be less or equal to 300 hours
(because we have 3 machines of type M1 and each of them is available for 100
hours). In mathematical terms

3R1 + 4R2 + 7R3 +R4 ≤ 300.

On the same line of thought, we get two similar inequalities for the other two
machines:

5R1 + 7R2 +R3 +R4 ≤ 400

R1 +R2 + 2R3 +R4 ≤ 100.

The decision variables must therefore satisfy a solution of the following system
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of inequalities: 

3R1 + 4R2 + 7R3 +R4 ≤ 300

5R1 + 7R2 +R3 +R4 ≤ 400

R1 +R2 + 2R3 +R4 ≤ 100

R2 ≥ 10

R3 ≥ 10

R4 ≥ 10

Ri ≥ 0, i = 1, 2, 3, 4.

These inequalities are the problem constraints. The set of all solutions of these
system of inequalities is called the set, or region, of the feasible solutionsFeasible solutions . Each
feasible solution is a feasible decision, which satisfy every constraint. Sometimes
the feasible set is empty: this means that the constraints are too restrictive and
the problem has no solution. For example, the following constraints system

R1 +R2 ≤ 50

R1 + 2R2 ≥ 120

Ri ≥ 0, i = 1, 2.

has a null feasible set. In fact, the second equation can be written as R1 +R2 +
R2 ≥ 120. The first equation implies that the sum of the first two terms is less
than or equal to 50, which in turn implies that R2 is greater than 70, which is
impossible, because the two variables are non negative and each of them must
be less or equal to 50. This could be too simple an example but with typical
LP problems with many variables and many constraints, it is very difficult to
spot a null feasible set and this can be done only with the help of a computer.

If there are solutions, i.e. if the feasible set is not empty, then the optimal
solution must be searched in this set.

Objective function

The last step in the formulation of a LP problem is the provision of a way
to choose the optimal solution among all the possible solutions. The choice is
made by either maximizing or minimizing a certain function, called objective
function. In the current example, we want revenues to be at their maximum.
As we plan the production of R1, R2, R3 and R4 thousands liters of each of
the 4 reagents, and given the data in Table 6.2, total revenues amount to

6200R1 + 3200R2 + 18000R3 + 2000R4

and we require this quantity to be the maximum possible.
All the previous requirements is summarized as follows:

max 6200R1 + 3200R2 + 18000R3 + 2000R4

s.t. 3R1 + 4R2 + 7R3 +R4 ≤ 300 (machine M1)
5R1 + 7R2 +R3 +R4 ≤ 400 (machine M2)
R1 +R2 + 2R3 +R4 ≤ 100 (machine M3)
R2 ≥ 10 (min. production R2)
R3 ≥ 10 (min. production R3)
R4 ≥ 10 (min. production R4)
Ri ≥ 0, i = 1, 2, 3, 4. (non neg. var.)
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value

Reagent R1 0
Reagent R2 10
Reagent R3 35.714
Reagent R4 10

Objective 694857

Table 6.3: Solution of example 6.2.1: final values of decision variables and
objective

Value Status Slack

Machine 1 300 Binding 0
Machine 2 115.714 Not binding 284.285
Machine 3 91.429 Not binding 8.571

Minimum R2 10 Binding 0
Minimum R3 35.714 Not binding 25.714
Minimum R4 10 Binding 0

Table 6.4: Solution of example 6.2.1: constraints values

where “s.t.” stands for subject to. All the objects in the previous summary is
indeed linear. When an LP problem is in the form just outlined, i.e. it has:

• an objective function to be maximized

• all the decision variables bound to be ≥ 0

• all the constraint in the ≤ form with variables on the left and resources
(numbers) on the right

it is said to be in standard form.

Solution

To get the solution to problem in example 6.2.1 we need a computer. The final
output of the software is usually similar to Tables 6.3 and 6.4.

The optimal production plan is to produce 10000 l of reagent 2, 35714 l of
reagent 3, 10000 l of reagent 4 and not to produce reagent 1 at all. Note that:

• although the revenues per unit for reagent 1 is greater than that of reagent
2 and 4, reagent 1 does not appear in the optimal solution

• while type 1 machines are used exhaustively, type 2 and type 3 machines
are used only partially. Type 2 machines are used for 115 hours out of
400 available hours; type 3 machines are used for 91 hours out of 100
available hours; remaining hours are shown in the 4th column in Table
6.4

• minimum production constraints on reagents 2, 3 and 4 are met, with a
surplus for constraint 3. Surplus is shown in the 4th column in Table 6.4
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In an optimal solution, when the value of a constraint is equal to its right
hand side, we say that the constraint is bindingBinding and not binding

constraints
. When the values are different,

we say that the constraint is not binding . If a constraint is binding, the cor-
responding resource is exhausted: in the optimal plan machine 1 has no hours
left. On the contrary, a not binding constraint points out a resource that is not
exhausted and what is left is reported in the “slack” column. For minimum
production constraints, we could make a similar, opposite, observation.

Another way to look at the same topic is to think of changing the left hand
sides of the constraints. In binding constraints a variation on the left hand
side in the same direction of the constraint (i.e. an increase for a greater than
or equal constraint, a decrease for a less than nor equal constraint) forces a
change in the solution. If machine 1 available hours decrease by one, going
to 299, the optimal solution must change because it is not a feasible solution
anymore! Similarly, if, say, the reagent 2 minimum production level increases
to 11 thousands, the previous optimal solution is again not feasible. On the
contrary, for not binding constraints there can be “room for change”. For
example, if a type 2 machine breaks down, making the available hours decrease
to 300, the optimal solution will not change. And an increase in the minimum
production of reagent 3 to 20 thousands would not force to change the plans,
as the optimal solution is already at 35714 liters .

6.3 Graphical solution

The graphical method for LP can be used only for problems with two decision
variables. We illustrate it with the following example.

Example 6.3.1. A chemical firm produces two types of textile dyes, C1 ed
C2. Each dye is made dispersing the pigment in a liquid. Each week 1000 mg
of pigment and 40 hours of labor are available. Total weekly production must
not exceed 700 l of dye. The quantity of C1 dye can exceed the quantity of C2

dye by no more than 350 l. Each l of C1 dye requires 2 mg of pigment and 3
minutes of labor. Each l of C2 dye requires 1 mg of pigment and 4 minutes of
labor. Each l of C1 dye makes 8 euros in revenues; each l of C2 makes 5 euros.

The managing board, given that C1 is more profitable than C2, suggested
to use all the resources to produce the maximum of C1 and then to use the
remaining resources to produce C2. Thus, the firm produced 450 l of C1, for a
revenues of 450×8 = 3600 euros, and 100 l of C2, for an additional 100×5 = 500
euros in revenues. The total revenues are 4100 euros. Is this solution optimal?

We have 2 decision variables: x, the planned production of C1, and y, the
planned production for C2, both expressed in l. The objective function is the
total revenues, 8x+ 5y. Moreover:

1. the total used pigment must not exceed 1000 mg: 2x+ y ≤ 1000;

2. labor hours must be less than or equal to 40: 3x+ 4y ≤ 2400;

3. total production must not exceed 700 l: x+ y ≤ 700

4. C1 production must not exceed C2 by more than 350 l: x ≤ y + 350.
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The LP problems is the following:

max 8x+ 5y
s.t. 2x+ y ≤ 1000 (pigment)

3x+ 4y ≤ 2400 (labor hours)
x+ y ≤ 700 (total prod.)
x− y ≤ 350 (mix prod.)
x, y ≥ 0

Inequalities in the Cartesian plane

Analytical geometry is a tool that links algebraic objects, equations and in-
equalities, with geometric ones: each point in the plane is linked to a couple
of real numbers and an equation in the two variables, x and y, links, through
its solutions, a geometrical object in the plane. If, for example, we briefly say
that the equation 2x + y − 1000 = 0 represent a straight line in the plane,
we actually mean that each solution of the equation 2x + y − 1000 = 0 is a
couple of numbers x and y, and this couple is linked to a point in the plane.
Therefore, the set of (all) the solutions of the equation is linked to the set of
the corresponding points. These point are displaced on a straight line. It is
then obvious that if a point does not lie on a straight line, its coordinates are
not a solution of the equation and vice versa.

The set of solutions of the inequality 2x + y ≤ 1000 is made up with the
solutions of the equation 2x + y = 1000 and the solutions of the inequality
2x + y < 1000. The former are the point on the straight line. The latter are
to be found among the point that do not belong to the line, that is among the
point for which 2x+ y 6= 1000. Geometrically, this is the union of the two half
planes created by the line 2x+ y = 1000. the origin, (0, 0), is a solution of the
inequality (2× 0 + 0 = 0 < 1000). For any other point P = (α, β) lying in the
same half plane as the origin, we could think of drawing a line from the origin
to P not intersecting the straight line 2x + y = 1000. If 2α + β > 1000 then
this would mean that we can change the value of 2x+ y from a value less than
1000 to a value greater than 1000. Continuity of the expression 2x+ y and of
the line OP imply that somewhere between the origin and P there should be a
point in which 2x+ y = 1000. But this can not happen, because O and P are
on the same side of the straight line. So the value of 2x+ y in P , and that of
any point on the same side of P , is to be of the same sign of that in O, i.e. less
than 1000. The straight line parts the plane into two half-planes: in one region
2x+ y > 1000 while in the other 2x+ y < 1000. As we know that in the origin
2x+ y < 1000, we can say that the graphical solution of 2x+ y < 1000 is the
half-plane with the origin. The solution to the original problem, 2x+y ≤ 1000,
is the union of the half-plane and the straight line.

The same can be said about non negativity constraints: requiring that x > 0
means we are considering only the points to the right of the y-axis and similarly
for y > 0. Both constraints bound the feasible solution to the first quadrant.

The feasible region will be solution of the system of all the inequalities of
the system.
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x

y

1

(500, 0)

(0, 1000)

Figure 6.1: Feasible region in ex. 6.3.1 with the constraint 2x+ y ≤ 1000

Graphical solution

Let us draw the feasible region step by step, taking one constraint at a time:

1. the pigment used in the process is to be less than 1000 mg: 2x+y ≤ 1000.
We draw the straight line and shadow the feasible region. See Figure 6.1.

2. labor hours have to be less than or equal to 40: 3x+ 4y ≤ 2400. Again,
we draw the straight line 3x+4y = 2400, and we note that the half-plane
we are interested in is that with the origin. Thus, the feasible region is
given by this half-plane intersected with the previous intermediate result.
See Figure 6.2.

3. whole production must not exceed 700 l: x+ y ≤ 700. See Figure 6.3.

4. C1 production must not exceed that of C2 by more than 350 l: x ≤ y+350.
See Figure 6.4.

The resulting area is the feasible set. Every point in this region represents
a production plan that satisfies the constraints.

The target is to choose among all the feasible solution to get the one that
maximizes the objective function, 8x + 5y. Let us take the set of parallel
straight lines of equation 8x+ 5y = z, where z is a real number. Each value of
z determines a unique straight line and therefore a value for the objective. We
would like to know:
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x

y

1 2

(800, 0)

(0, 600)

(500, 0)

(320, 360)

(0, 1000)

Figure 6.2: Feasible region in ex. 6.3.1 with 2x+ y ≤ 1000 and 3x+ 4y ≤ 2400

x

y

1 23

(800, 0)

(0, 600)

(0, 700)

(500, 0)

(700, 0)

(300, 400)

(400, 300)(320, 360)

(0, 1000)

Figure 6.3: Feasible region in ex. 6.3.1 with 2x + y ≤ 1000, 3x + 4y ≤ 2400
and x+ y ≤ 700
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x

y

1 234

(800, 0)

(0, 600)

(0, 700)

(500, 0)

(700, 0)(350, 0)

(300, 400)

(400, 300)(320, 360)

(0, 1000)

(450, 100)

Figure 6.4: Feasible region in ex. 6.3.1 with all the constraints.

• if at least one point in the feasible region is a point of at least one of the
parallel lines

• among the points that satisfy the previous requirement, which is that (or
those) whose objective value is the highest possible.

For every non empty feasible region, the answer to the first question is always
yes, because the parallel lines span the entire plane. To answer the second
question, we show in Figure 6.5 3 straight lines corresponding to the values
z = 100, 1000, 2000.

As the line moves to the right, z increases. Thus, every feasible solution
that lies on 8x+5y = 1000 is better than any that lies on 8x+5y = 100. As we
increase z, i.e. we move the line to the right, the line will eventually have no
intersection with the feasible region. The borderline point is (320, 360): the line
that passes through this point is that with z = 8× 320 + 5× 360 = 4360. This
is the maximum value of the objective that satisfies the constraints, for moving
the line further to the right we get no feasible solution. The optimal solution to
the problem is produce 320 l of C1 and 360 of C2. The corresponding revenues
are 4360 euros. See Figure 6.6.

The optimal solution is a vertex at the intersection of the straight lines
corresponding to constraints 1 and 2. This means that when choosing the
optimal solution, the resources represented in these constraints are completely
allocated. In fact, with x = 320 and y = 360 the pigment used in the process is
2× 320 + 360 = 1000, i.e. all the available pigment. The same can be said for
labor hours. Constraints 1 and 2 are binding. In contrast, the optimal solution
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1 234

Figure 6.5: Feasible region and objective function for some values of z.
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(0, 600)

(350, 0)

(320, 360)

(450, 100)

Figure 6.6: Graphical solution of ex. 6.3.1.
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Vertices Values of z

(0, 0) 0
(350, 0) 2800
(450, 100) 4100
(320, 360) 4360
(0, 600) 3000

Table 6.5: Vertices of the feasible region and values of the objective in ex.
6.3.1.

does not lie on the other two straight lines, corresponding to constraints 3 and
4. These constraints are not binding and the corresponding resources are not
completely allocated.

By the word “resource” we do not necessarily mean a material resource.
Constraint 4, for example, defines a feasible mix of production, not a quantity
of something. The fact that a constraint is not binding means that its right
hand side (the binding value of the resource) can be changed without altering
the optimal solution.

It can be shown that the optimal solution in a LP problem is always in a
vertex of the feasible region. If the optimal vertices are more than one, this
means that all the points in the segment joining the two vertices are optimal
solutions as well and thus that there are infinite optimal solutions (see section
7.5).

The preceding result suggests a quick method for finding the optimal solu-
tion. As the optimum must be on a vertex of the feasible region, it is enough to
check the value of the objective in all the vertices. The vertex with the highest
value is the optimal solution. In the current example, vertices and correspond-
ing values of the objective are shown in Table 6.5. It is easy to see that the
maximum is reached in (320, 360).

6.4 Problems

Problem 6.4.1. A company produces two types of pipes: high temperature
resistant (A) and ultra high temperature resistant (AA). For every ton of AA
pipes, the company get 39 euros of revenuesm while each ton of A pipes gen-
erates a revenues of 31 euros. The production of a ton of AA type requires 7
hours, while for a ton of A type only 5 hours are needed. The machinery can
provide no more than 56000 work hours.

The company would like to produce at least 10000 tons of pipes, no mat-
ter what type. The company would like to maximize revenues meeting the
constraints. Formulate a LP model and solve it graphically.

Problem 6.4.2. A farm buys feed for its animals from two suppliers, 1 and
2. Feeds are mixed together before being given to animals. Each feed contains
ingredients which are essential to the life of the animals and to their growth,
such as vitamins, minerals, etc.

One kg of feed from supplier 1 contains 5 g of ingredient A, 4 g of ingredient
B and 0.5 g of ingredient C. One kg of feed from supplier 2 contains 10 g of
A, 3 g of B and does not contain C.
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Supplier 1 cost is 0.2 euro per kg; supplier 2 cost is 0.3 euro per kg.
The monthly need for each animal is 90 g of A, 48 g of B and 1.5 g of C.
Write a LP model and determine the composition of the mix that, while

meeting the animal needs, is the cheapest. Use the graphical method to solve
the problem.

6.5 Quickies

Question 6.5.1. What is the “slack” in a constraint in a standard LP model?

Question 6.5.2. What does “linear” menas in LP?

Question 6.5.3. What is a binding constraint?

Question 6.5.4. Are two LP problems that differ only in the order of the
constraints equal?

Question 6.5.5. What is the feasible set in a LP problem?
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Chapter 7

Sensitivity analysis

7.1 General framework

A LP model contains an objective function and a number of equalities and in-
equalities. All of them are defined through their coefficients. These coefficients
represent the parameters of the problem, such as prices, revenues, costs, quan-
tities, etc. that are assumed to be valid at the moment in which the decision
maker will start the execution of the production plan. As we already wrote in
Chapter 4, in doing this a couple of issues should be noted.

The first is that all the coefficients in a LP problem are typically the result
of more or less reliable estimates of the quantities in place. These are usually
known with a certain degreee of confidence. Thus we might wish to assess what
happens when they vary in a given range.

The second is that the solution of a LP problem is something that will
be implemented in the future and is therefore subject to another degree of
uncertainty. For example, a LP problem might include the price of a certain
item. Based on this particular value an optimal solution has been found. Now,
the decision maker runs the risk that, when the production is completed and
the product is about to be sold, market conditions have changed and the price
is either too high or too low to be reasonable.

As in Chapter 4, to overcome both issues we must see how the optimal
solution changes as single coefficients change. This analysis is called sensitivity
analysis. We show how it works on the problem already solved graphically.

7.2 Objective’s coefficients

In example 6.3.1, the objective function coefficients of choice variables x and
y in represent revenues coming from the sale of 1 l of C1 and 1 l of C2. Let
us call the two coefficients (marginal revenues) a and b. These values (8 and
5) are defined at the moment the model is built and could change when dyes
are actually sold. A change in the coefficient of the objective function causes a
change in the slope of the parallel lines and we must see if these changes could
affect the optimal solution or not.

Assume, for simplicity, that there could be a variation of a while b remains
fixed. We are therefore studying the behavior of the lines ax+ 5y = z. These
lines are called iso-revenues lines. The slope of the lines is −a/5 and as far as
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this is between that of constraints 1 and 2, the optimal solution is the same
(the optimum is the vertex at the intersection of constraints 1 and 2). The
slope of constraint 1 is −2 while that of constraint 2 is −3/4. Thus, (320, 360)
is still the optimal solution if a is such that

−2 < −a
5
< −3

4
.

Multiplying by −5 we get

3.75 < a < 10.

As a is 8, we can state that

if a increases by a maximum of 2 (= 10− 8) or decreases by a max-
imum of 4.25 (= 8−3.75) the optimal solution remains unchanged.

The difference between the maximum value of a for which the solution does
not change and the original value of a is called allowable increase. Similarly,
the difference between the minimum value of a for which the solution does not
change and the original value of a is called allowable decreaseallowable increase and

decrease
. The overall

variation interval for the coefficient is called allowable range

If a changes in the allowable range, the optimal solution does not change
but the optimum value does change. For example, if a becomes 9, the optimal
solution is still (320, 360) but the value of the objective is now 9×320+5×360 =
4680. This change, however, is of minor importance because the good news
is that the already in progress plan is still the optimal one. The greater the
allowable increases and decreases the less the decision maker is worried about
his plan.

An analogous computation can be done for b. If we have 8x+ by = z, with
b > 0, the slope of the objective is −8/b and the previous requirements are:

−2 < −8

b
< −3

4
.

Multiplying by −b we get

4 < b <
32

3
.

Summing up we could say that

if y coefficient in the objective increases by a maximum of 17/3 =
5.66 . . . (= 32/3− 5) or decreases by a maximum of 1 (= 5− 4) the
optimal solution remains unchanged.

As in the previous case, even if the optimal solution does not change, the
value of the objective function at the optimum does change. When dealing with
more than two variables these calculations are done by a computer whose out-
put is a table with maximum allowable increase and decrease for any objective
coefficient.

Sensitivity analysis on objective coefficients provides the decision maker
with the range within which each coefficient could change without changing
the optimal solution.
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x

y

z
=

4020

1∗ 234

(0, 600)

(350, 0)

(240, 420)

(416, 66)

Figure 7.1: Graphical solution to example 6.3.1 with 2C1 + C2 ≤ 900.

7.3 Resources level and shadow prices

A different managerial question that can be addressed through sensitivity ana-
lysis concerns available resources, i.e. the left hand sides of constraints in-
equalities. We note that by changing the levels of the resources we could, in
principle, change our production plan. Actually, we are changing the shape
of the feasible region and so the question is whether it is worth going to the
market to get additional resources. This then, boils down to determining how
much a unit of additional resource is worth to us.

Let us start with constraint 1: 2x+ y ≤ 1000. If we decrease 1000 to, say,
900 the corresponding straight line moves left and the maximum moves left as
well (see Figure 7.1 where the new constraint is named 1∗ and is parallel to the
old).

The new optimal point is (240, 420) with an objective maximum value of
4020 euros. The decrease in the maximum is easily explained taking into ac-
count the new resource level: as now there is less pigment available, there will
be less dye and then a decrease in revenues.

The maximum has changed and the optimal solution has changed as well.
What is the same as in the original solution is the fact that the optimal point is
still at the intersection of constraint 1 and constraint 2 (even if the former has
moved from the original position). This means that binding constraints are the
same as in the original optimum. Note that the change in level of the binding
resources can (not necessarily must) force a change in the optimal solution,
while a change in not binding constraints does not change the optimum.
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C1

C2

z
=

4700

1∗∗ 234

(0, 600)

(350, 0)

(400, 300)

(416, 133)

Figure 7.2: Graphical solution of example 6.3.1 with 2C1 + C2 ≤ 1100.

If we further reduce the available pigment, the optimal point moves towards
(0, 600). That is an “extreme point”: a further reduction in the resource level
moves the point of maximum (or minimum) from the intersection of constraints
1 and 2 to the intersection of constraint 1 and the y-coordinate axes (which
is a non-negativity constraint). As the set of binding constraints has changed,
the previous analysis is not valid anymore.

Let us now go back to the original problem, and move to a different situa-
tion, namely the increasing of the available pigment. In this case, constraint 1
moves to the right. If the increase is 100 mg the optimal solution moves from
(320, 360) to the intersection of constraints 1, 2 and 3, at (400, 300) (see Figure
7.2).

Further increments in constraint 1 level move the optimal solution on the
intersection between constraint 2 and 3 and again the set of binding constraints
changes. Summarizing

if the left hand side of constraint 1 increases by no more than 100
or decreases by no more than 400 the optimal solution remains on
the intersection of constraints 1 and 2.

Shadow prices

A 100 units increase in the right hand side of the pigment constraint has caused
the maximum revenues to increase by 340 euros. On average, this means 3.4
euros more per unit of pigment. As the model is linear, this average is actually
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equal to the “marginal” increase. In the differential calculus jargon, if b is the
right hand side and f is the objective, we would write

∆f

∆b
= 3.4

when ∆b is within the bounds found in the previous section. The value of
∆f/∆b is called “shadow price” of the pigment. Shadow prices corresponding
to different constraints are usually denoted by λ1, λ2, etc.

To explain the meaning of shadow prices, consider a decision maker who
wonders what happens when he buys one more unit of a certain resource whose
market price is c. Having more resources, the value of the objective function at
the maximum increases by the shadow price, λ. To purchase the new resources
is profitable only if λ > c. Thus, λ is indeed a sort of price, even if it not a
real one, as it is computed by the model. Its value depends on the coefficient
appearing in the model. This is the reason why this price is labeled “shadow”.

If we proceed in the same way for constraint 2 we discover that a labor
hour has a shadow price of 0.4 euros. If the market cost of a labor hour were
less than 0.4 euros, say 0.3 euros, it would be profitable to buy extra hours to
increase the profit.

Constraints 3 and 4 are not binding and therefore increasing the values
of the corresponding resources does not cause the objective to change. Their
resources are already more than what is needed to reach the maximum and
therefore the shadow price is zero.

There is a simple relation between shadow prices and binding constraints:

In an inequality constraint, the product of each slack and the cor-
responding shadow price is always 0. Therefore, if there is a slack
(and the constraint is not binding), then the shadow price is 0; if,
on the contrary, the shadow price is different from 0, then the slack
is zero (and the constraint is binding).

This principle is called “complementary slackness”.
It should be noted that the aforementioned product could be zero also when

a shadow price vanishes and the corresponding constraint is binding. However,
this happens only in some particular cases, see section 7.5. Shadow prices are
defined similarly when resources are decreased. From a mathematical point of
view, shadow prices are both left and right derivatives.

The sign of a shadow price is related to the type of constraint. In a less
than (¡) constraint, increasing the resource level extends the feasible set and the
objective can change or remain the same as before (because the previous opti-
mal point is still feasible). In a maximization problem objective can increase
(λ > 0) or not (λ = 0); in a minimization problem, objective can decrease
(λ < 0) or not (λ = 0).

Conversely, when the constraint is a greater than (¿) an increase in the
resource level shrinks the feasible set and the original optimal solution could be
not feasible anymore. In a maximum problem, objective can decrease (λ < 0)
or not (λ = 0); in a minimum problem objective can increase (λ > 0) or not
(see Table 7.1).

When the LP problem has more than two variables the solution is usually
obtained by a computer program which outputs a standard report with the
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ob. max. ob. min.

≤ + -
≥ - +

Table 7.1: Shadow price sign and type of constraint and objective function.

Final Reduced Objective Allowable Allowable
Name Value Cost Coefficient Increase Decrease

Reagent R1 0.000 -1514 6200 1514.285714 1E+30
Reagent R2 10.000 0 3200 7085.714286 1E+30
Reagent R3 35.714 0 18000 1E+30 3533.33332
Reagent R4 10.000 0 2000 571.428571 1E+30

Table 7.2: Sensitivity report (1) for ex. 6.2.1: decision variables and objective
function

Final Shadow Constraint Allowable Allowable
Name Value Price R.H. Side Increase Decrease

Machine 1 300.000 2.571 300 30 180
Machine 2 115.714 0.000 400 1E+30 284.2857143
Machine 3 91.429 0.000 100 1E+30 8.571428571

Minimum R2 10.000 -7.086 10 44.22222222 10
Minimum R3 35.714 0.000 10 25.71428571 1E+30
Minimum R4 10.000 -0.571 10 12 10

Table 7.3: Sensitivity report (2) for ex. 6.2.1: constraints

most relevant facts. For example 6.2.1 Microsoft Excel Solver produced two
tables, 7.2 and 7.3.

7.4 Reduced cost

In report 7.2 there is a “reduced cost” column. To explain the meaning of this
column, let us go back to the original optimal solution. The optimal plan is
to produce 10000 l of reagent 2, 35714 of reagent 3, 10000 l of reagent 4 e not
to produce reagent 1. Reagent 1 is missing from the optimal plan because, in
comparison with other reagents that use the same resources, its unit revenue is
too low to be profitable. If, starting from the optimal plan, we were somehow
forced to produce reagent 1, e.g. for marketing reasons, the objective will
decrease.

How much will we loose? In example 6.2.1 the unit revenue from reagent
1 is 6200 euros (a unit means a thousand liters). If we were to produce this
amount of reagent 1 there will be no problem with minimum constraints for
reagents 2, 3 and 4, because they would be automatically satisfied.

Machine 2 and machine 3 type constraints are not binding and therefore
have slacks greater than 0. As one unit of reagent 1 uses 5 hours of machine
2 and 1 hour of machine 3 and corresponding slacks are of 284 hours and 8
hours, there is no problem here in making the new production.
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Machine 1 constraint, however, is binding. To produce one unit of 1 we need
3 hours which must be taken off the optimal solution, reducing the quantity of
the other reagents. There are 297 hours left for reagents 2, 3 and 4. In the new
plan we get 6200 euros from the production of reagent 1 but we pay for the
reduction. As machine 1 shadow price is 2571.429 euros, a 3 hours reduction
costs 3× 2571.429 = 7714.287 euro. The final balance is

+6200− 7714.287 = −1514.287

euros. This is what is written in the “reduced cost” on the reagent 1 row. The
reduced cost is the balance of moving the corresponding decision variable from
zero to 1. If the target is to maximize the objective, this balance is negative
(because if moves from the optimal solution).

Looking at the same problem from another point of view, we could say that
the reduced cost is the amount by which we should increase the profit of the
a decision variable to make it appear in the optimal solution. In this example,
if the unit revenue were equal to or greater than 7714.287, the production of
reagent 1 would increase the value of the objective and therefore reagent 1
would appear in the optimal solution.

Whenever a decision variable is missing from the optimal plan, because it is
not profitable, the reduced cost quantifies this statement by telling how much
it is not profitable.

7.5 Special cases

we will now examine some special LP problems.

Degeneracy

In the LP problem
max 3x+ 2y
s.t. x+ y ≤ 100

x ≤ 50
y ≤ 50
x, y ≥ 0

the optimal solution is x∗ = 50, y∗ = 50 with a maximum objective value equal
to 250. The first constraint is binding but if the resource level increases by one
unit, to 101, the optimal solution does not change, because of the other two
constraints. The shadow price of the resource in constraint 1 is 0, even if the
constraint is binding.

If the resource level decreases by one unit, to 99, the optimal solution must
change and necessarily it would be x = 50, y = 49, with a maximum at 248 (x
is more profitable than y and then is better to decrease y than x). The shadow
price is then 2.

Thus, in this case the shadow price is not uniquely defined but depends on
the way we change the resource level. The problem lies in the fact that the first
inequality is the sum of the other two inequalities. In mathematical terms, the
three inequalities are not linearly independent. This is called degeneracy Degeneracy. For
this example, this problem is easy to spot, but in more general models, with
hundredths of variables and inequalities, this can be done only by the computer
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x

y

z =
1000

12
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(50, 25)

Figure 7.3: Feasible region and objective function for z = 1000.

and the optimization software typically points out these problems in the final
report.

Infinite solutions

Let us solve the following LP problem graphically.

max 25x+ 50y
s.t. x+ 2y ≤ 100

x ≤ 50
x, y ≥ 0

We obtain the result in Figure 7.3.

As the iso-objective line and that of constraint 1 are parallel, when they
intersect they end up having an entire segment in common, namely the segment
joining (0, 50) and (50, 25). Optimal solutions are therefore infinite, every point
in the segment.

If we perform a sensitivity analysis on a problem like this one we would get
strange results. A basic computer software, for example, could find only (0, 50)
and ignore all other solutions. Again, what is easy to spot in a two variable
problem, could be invisible in a real world application and here the role of
software is crucial: a good software for optimization is one that spots problems
in the system of constraints and warns the user about possible oddities.

7.6 Problems

Problem 7.6.1. The Cookie Store sells three types of biscuit box: chocolate
chip, pecan chip and twists. All biscuits are made with chocolate, nuts and
sugar. The store has 312 pounds of sugar, 125 pounds of chocolate and 50
pounds of nuts. For marketing reasons, at least 5 chocolate boxes are to be
produced. The ingredients of each type of biscuit box is shown in Table 7.4.
Revenues for each type of box is shown in Table 7.5.
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ingredient choc. chip pecan chip twists

sugar 21 15 9
chocolate 10 5 0
nuts 1 2 0

Table 7.4: Ingredients in biscuits

box type revenue

chocolate chip 20
pecan chip 25
twists 17

Table 7.5: Unit revenue for each type of biscuit box

Write a LP model to find the optimal production plan to maximize revenues.
If some biscuits are left after each box is packed, they will be sold at the same
price at a coffee shop nearby. Conduct a sensitivity analysis and answer the
following questions:

1. How many biscuits it is optimal to cook? What is the total revenue?

2. Which are the not binding constraints?

3. How many pound of nuts are needed in the optimal solution?

4. Will you suggest to the Store manager to produce more chocolate bis-
cuits? Why?

5. What should the pecan chips price be to make it profitable to produce
them?

6. If we had 7 more pounds of sugar, what would the optimal total profit
be?

7. What will happen to the optimal solution if the price of a chocolate box
increases to 24? Why? What would then be the total revenue?

Problem 7.6.2. A farmer must determine how many acres of corn and wheat
to plant. An acre of wheat yields 5 tons of wheat and requires 6 hours of labor
per week. An acre of corn yields 4 tons of corn and requires 10 hours of labor
per week. All wheat can be sold at 30 euros a ton, and all corn can be sold at
50 euros a ton. 45 acres of land and 350 hours per week of labor are available.
Government regulations require that no more than 140 tons of wheat and no
more than 120 tons of corn be produced during the current week. Formulate a
LP to tell the farmer how to maximize the total revenue from wheat and corn.
Then:

1. Perform a sensitivity analysis

2. If the farmer had only 40 acres, how much would the revenue be?

3. If the wheat price dropped to 26, what would the optimal solution be?
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4. Determine the allowable increase and decrease ranges within which the
optimal solution does not change. If only 130 tons of wheat could be
sold, would the answer to the original problem change?

Problem 7.6.3. A bank must decide the composition of the portfolio of the
bonds to sell. Three bonds can be sold at unit prices equal to 92 (bond 1), 95
(bond 2) and 96 (bond 3), in dollars. The bank target is to maximize revenue
from the selling of the bonds, fulfilling the following constraints:

• at least 70% of the bond should be of type 1 or 2;

• bonds of type 1 must not be more than three times bonds of type 2;

• the portfolio should have no more than 100 bonds.

With these data:

1. formulate a LP problem and solve it, determining the composition of the
optimal portfolio, its revenue and the set of binding constraints.

2. perform a sensitivity analysis

3. if the bond 2 price raised to 96, would the portfolio change? How much
would the revenue change?

4. if the bond 3 price raised to 100, would the portfolio change? How much
would the revenue change?

5. if the bank issued 19 more bonds, how much would the revenue increase?
Which type of bonds would be issued? How much should the bond 1
price increase for the bond to be issued by the bank?

Problem 7.6.4. Orange Krush sells oranges crates and orange juice in bottles.
For each kg of oranges used to get juice, the company gets a revenue of 1.5 euro
for a cost of 1.05 euro. For each kg of oranges used for crates, the company
gets a revenue of 0.50 euro for a cost of 0.20 euro. 100000 kg of oranges are
available, the 40% of which must be used to produce juice. In addition, at least
20000 kg of oranges must be sold in crates. The problem is to:

1. find the optimal sell plan, maximizing the margin and its value.

2. find the set of binding constraints.

3. find the allowable profit increase and decrease for each kg of oranges to
keep the optimal solution unchanged.

4. is the minimum crates production constraint binding, given that its shadow
price is negative? Why is it so?
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7.7 Quickies

Question 7.7.1. In a production problem, a certain raw material must be less
than or equal to 100. The optimal profit is 100. The shadow price for that
material is 2. What happens if we buy one more unit of the raw material,
provided this change is within the allowable range?

Question 7.7.2. In a production problem, a certain raw material must be less
than or equal to 100. The optimal profit is 100. The shadow price for that
material is 2. Will you suggest the manager to buy an additional unit of raw
material on the market at the price of 3?

Question 7.7.3. In an objective function the coefficient of a decision variable
is 5 and its allowable change is (−2,+3). If the coefficient increases by 1, does
the objective change?

Question 7.7.4. What is the reduced cost of a variable in a LP problem?

Question 7.7.5. If a constraint is not binding, can the shadow price be dif-
ferent from 0?
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Chapter 8

LP Examples

This is a brief review of some examples of application of linear programming.
I focused on the construction of the model and not on its solution which, as I
said in the preface, is thought to be done with the help of a computer.

8.1 Minimum problems

Example 8.1.1. A fashion company has recently started a new top brand.
The marketing campaign is largely based on advertising on a satellite channel.
Advertisements will be broadcast on sports channels (for men’s clothing) and
movies channels (for women’s clothing). Each minute of advertisement on the
sport channel costs 100000 euros and each minute on the movie channel costs
50000 euros. Each ad on the sport channel is watched by 2 millions females
and 12 millions males. Each commercial on the movie channel is watched by 7
millions females and 2 millions males.

The company has a target to reach 28 millions women and 24 millions
men. How many commercials should be broadcast on each channel to reach
the target at the minimum cost? In formulating the problem take into account
that the previous numbers are average estimates and the commercial can last
for whatever amount of time, even less than a minute.

Decision variables are easy to determine: let x1 be the number of commer-
cials on the movie channel and x2 the number of commercials on the sport
channel. Obviously, x1, x2 ≥ 0 and the last information about the commercial
implies that x1 e x2 are real numbers. The total cost is 50x1 + 100x2 and must
be minimized. With x1 ads broadcast on movie channels the company reaches
7x1 millions women and with x2 ads on sports channel the company reaches
2x2 millions women for a total of 7x1 + 2x2 millions women. This must be
greater than 28 millions, i.e.

7x1 + 2x2 ≥ 28

In the same way, for men we have

2x1 + 12x2 ≥ 24
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x1

x2

1
2

z =
600

z =
320

Figure 8.1: Example 8.1.1: feasible set and objective function for z = 600 and
z = 320.

The LP problem is

min 50x1 + 100x2
s.t. 7x1 + 2x2 ≥ 28 women

2x1 + 12x2 ≥ 24 men
x1, x2 ≥ 0

This is an example of a minimum cost problem. A plan must be devised
fulfilling a set of “greater than” constraints and minimizing a cost function.
Solving the problem with the graphical method we get Figure 8.1.

In this type of problems, the feasible set is usually unbounded. The reason
is that there is always a solution that satisfies all the constraints. The question
is to find the solution the has the minimum cost. In this case, the optimal
solution is (3.6, 1.4) with the objective value equal to 320.

The so called “diet problems” belong to this category as well. In a diet
problem, we consider a number of foods, say meat, milk, fruit, etc. and their
constituent elements, say vitamins, proteins, sugars, fats, minerals, etc.. Each
organism needs a minimum amount of the elements per day and to get them
eats various food. A good diet is one who provides the organism with the right
quantity of vitamins, etc. Among all possible good diets, the best one is the
less expensive. Frequently, the composition of a diet is given as a percentage
of the total food, as in the following example.
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8.2. Integer programming

oil 1 2 3 4

% di A 20 40 70 80
% di B 20 10 60 70

Table 8.1: Substances A e B in basic oils 1, 2, 3 and 4

oil 1 2 3 4

Unit cost 1.5 2.2 4.3 4

Table 8.2: Unit cost of basic oils

Example 8.1.2. To produce burning oil, a factory mixes 4 basic oils. Each
basic oil contains 2 substances, A and B that must be in the final mix as
respectively its 30% and its 40%. The composition in basic oils is shown in
Table 8.1.

Unit cost for basic oils are shown in Table 8.2.
Determine the less expensive mix that satisfies the constraints on A and B.

Let x1, . . . , x4 the percentages of basic oils in the mix. If x1 is the percentage
of basic oil 1 in the mix and oil 1 contains 20% of A, the contribution of oil 1 to
the quantity of A is 0.2x1 and similarly for other basic oils and for substance
B. The constraints on substances are therefore

0.2x1 + 0.4x2 + 0.7x3 + 0.8x4 ≥ 0.3

0.2x1 + 0.1x2 + 0.6x3 + 0.7x4 ≥ 0.4

As x1, . . . , x4 are percentage of the mix, we must add a constraint asking
their sum is 1:

x1 + x2 + x3 + x4 = 1

The LP problem is:

min 1.5x1 + 2.2x2 + 4.3x3 + 4x4
s.t. 0.2x1 + 0.4x2 + 0.7x3 + 0.8x4 ≥ 0.3 (Substance A)

0.2x1 + 0.1x2 + 0.6x3 + 0.7x4 ≥ 0.4 (Substance B)
x1 + x2 + x3 + x4 = 1 (Percentages)
xi ≥ 0, i = 1, 2, 3, 4.

and its solution is x1 = 0.6, x2 = 0, x3 = 0 e x4 = 0.4.

8.2 Integer programming

Decision variables are not always real numbers. If, e.g., a variable represents the
number of employees in a company, non integer numbers have no meaning at
all. The request that variables are only integers radically changes the problem
into a new one and its solutions.

When one or more than one variable must take only integer values, we speak
of an Integer Programming problem (IP). To each IP problem, one can always
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point obj.

(0, 0) 0
(0, 1) 5
(0, 2) 10
(1, 0) 1
(1, 1) 6
(2, 0) 2
(2, 1) 7

Table 8.3: Objective values at the feasible points in ex. 8.2.1.

associate a LP problem, that obtained by removing the integer constraint. This
is the “relaxed” problem of an IP.

The first approach to an IP is to solve the relaxed LP problem and re-
move the non integer parts of the solution. To do this, there are usually two
techniques:

• truncation, the removal of the digits after the decimal point, e.g. trun-
cating e = 2.718 . . . we get 2;

• rounding, the removal of the digits after the decimal point with, possibly,
the substitution of the last one if the subsequent is greater than 4, e.g.
rounding e = 2.718 . . . we get 3.

The following example shows that both techniques produce wrong solutions.

Example 8.2.1. Consider the problem

max x+ 5y
s.t. x ≤ 2

x+ 10y ≤ 20
x, y ≥ 0 integers

As x ≤ 2 and x must be integer and non negative, x could be x = 0, 1, 2.
Therefore, if x = 0, then y can be y = 0, 1, 2 (or the inequality x+ 10y ≤ 20 is
not true); if x = 1 or x = 2, y could be y = 0, 1 (for the same reason). The only
feasible solutions are: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1). The value
of the objective function in these points are shown in Table 8.3. The optimal
solution is (0, 2).

The relaxed problem is:

max x+ 5y
s.t. x ≤ 2

x+ 10y ≤ 20
x, y ≥ 0

and its graphical solution is shown in Figure 8.2.
From the figure we see that the relaxed solution is (2, 1.8) with objective

equal to 11. The rounded solution is (2, 2), which is not feasible (the second
constraint is false). The truncated solution is (2, 1), feasible but not optimal:
objective is 7. Finally, note that the optimal solution, (0, 2), is “far” from that
of the relaxed problem.
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x

y

z = 11
(2, 1.8) rel. IP

solution: z = 11

(2, 2) rel. IP
sol. rounded.:
not feasible

(2, 1) rel. IP
solution trunc.: z = 7

(0, 2) opt. IP solution
z = 10

Figure 8.2: Graphical solution of ex. 8.2.1. Solutions of relaxed problem are
in red; IP solution in black

fund cost revenue

1 5000 16000
2 7000 22000
3 4000 12000
4 3000 8000

Table 8.4: Costs and revenues of funds in ex. 8.3.1

In real IP problems, with hundredths of constraints and variables, the
graphical approach is impossible. In these problems, the integer coordinates
points grow exponentially with the number of decision variables and to look at
the objective value at each of them would require an infinite time1. To solve
IP problems, many very clever algorithms have been invented and are now
implemented in many commercial and open source software.

8.3 Binary variables

IP problems contain an important subset, those in which variables can take
only two values, 0 and 1. These variables are called binary variables. Their use
is shown in the following example.

Example 8.3.1. 14000 euros are available to invest in one or more funds
chosen in a group of 4. Funds cost and revenues are shown in Table 8.4. It is
not possible to invest in more than one share of the same fund (e.g., one can
not buy two shares of fund 1). Find the mix that maximizes the revenues.

1this is not a joke. Let us take the [0, 2] interval as the range of some decision variables.
With one variable, the are only 3 points, 0, 1 e 2. With two variables, there are 9 points,
on a square from (0, 0) to (2, 2). With three variables we have a cube with 27 points, from
(0, 0, 0) to (2, 2, 2). With 60 variables, we would have 360 integer points, approximately
1041. The most performing computer now can do 1015 operations per second(source: http:

//www.top500.org/. To look at each integer coordinates point, such a computer would need
1041/1015 = 1026 seconds, i.e. 1019 years, one billion times the age of the universe.
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time slot minimum policemen

0-4 40
4-8 35
8-12 60
12-16 55
16-20 50
20-24 50

Table 8.5: Minimum number of policemen for each time slot

For each fund we must decide whether to buy it or not. Let x1 be a variable
that takes the value 1 if we buy fund 1 or 0 if we do not buy it. Total revenue
is given by

16x1 + 22x2 + 12x3 + 8x4

(in thousands of euros) and must be maximized. The only constraint is that
of budget. Only 14000 euros are available so

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

(again in thousands of euros). The IP problem is

max 16x1 + 22x2 + 12x3 + 8x4
s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14

x1, x2, x3, x4 binary

The optimal solution is x1 = 0 and x2 = x3 = x4 = 1, i.e. buy one share of
funds 2, 3, and 4 with a revenue of 42000 euros. Note that fund 1, which does
not appear in the optimal solution, is the one with the highest return, 220%,
while we have 214% for fund 2, 200% for fund 3 and 166% for fund 4.

8.4 Assignment problems

Another example of application of LP are assignment problems, as the following
example.

Example 8.4.1. a police district has a number of agents providing security
24 hours a day. Policemen work on 4-hours shift or 8-hours shift. Each day the
are 6 slots of 4 hours and in each slot a minimum number of policemen must
be on duty, according to Table 8.5.

Costs for each shift are shown in Tables 8.6 and 8.7.
The same structure repeats everyday. Find the number of policemen to be

assigned to each shift to minimize costs.

We have integer decision variables, corresponding to the number of agents
working on a given shift. We have two types of shift, 4 hours and 8 hours,
and for each shift there are 6 possible times to start. Let x0 be the number of
policemen with a 4-hours shift starting at midnight, x4 the number of policemen
with a 4-hours shift starting at 4, x8 the number of policemen with a 4-hours
shift starting at 8 AM, and so on till x20. In the same way, let y0 be the number
of policemen with a 8-hours shift starting at midnight, etc. till y20.
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time slot cost per policeman

0-4 6
4-8 6
8-12 4
12-16 4
16-20 4
20-24 5

Table 8.6: Policeman cost for 4-hours shift

time slot Policeman cost

0-8 15
4-12 15
8-16 8
12-20 8
16-24 8
20-4 11

Table 8.7: Policeman cost for 8-hours shift

Policemen on duty between 8 AM and noon? Those who start at 8 AM, x8
e y8, and those who started at 4 AM with a 8-hours shift, i.e. y4. Summing
up, policemen on duty from 8 to noon are x8 + y8 + y4 and this number should
be greater than or equal to 60.

For the other time slots we make the same calculations (note that policemen
starting at 8 PM on a 8-hours shift are on duty until 4 AM of the next day).

The objective is to find the minimum of

6x0 + 6x4 + 4x8 + 4x12 + 4x16 + 5x20 + 15y0 + 15y4 + 8y8 + 8y12 + 8y16 + 11y20

and the IP problem is

min 6x0 + 6x4 + 4x8 + 4x12 + 4x16 + 5x20+
15y0 + 15y4 + 8y8 + 8y12 + 8y16 + 11y20

s.t. x0 + y0 + y20 ≥ 40 (shift 0-4)
x4 + y0 + y4 ≥ 35 (shift 4-8)
x8 + y4 + y8 ≥ 60 (shift 8-12)
x12 + y8 + y12 ≥ 55 (shift 12-16)
x16 + y12 + y16 ≥ 50 (shift 16-20)
x20 + y16 + y20 ≥ 50 (shift 20-24)
xi, yi ≥ 0, i = 0, 4, 8, 12, 16, 20, integers

The solution is x0 = 40, x4 = 35, x8 = 5, y8 = 55, y16 = 50 and all other
variables equal to 0. The minimum cost is 1310.

8.5 Problems

Problem 8.5.1. A pharmaceutical company has two main stores, A and B,
with respectively 100 and 250 boxes of a certain drug. The stores supply three
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from A from B

to C 5 3
to D 10 4
to E 12 9

Table 8.8: Transportation costs in ex. 8.5.1.

wholesalers, C, D and E, who requested, respectively, at least 50, 120, and 180
boxes of the drug. Transportation costs per box are shown in Table 8.8. Find
the optimal plan.

Problem 8.5.2. A food company makes two types of marmalade, with oranges
or with lemons. Fruits are bought at 0.3 euros per kg. Each kg is processed
for an hours before being available for packaging.

Each kg of fruit provides 3 hg of lemon marmalade and 4 hg of orange
marmalade. Lemon marmalade is sold at 0.7 euro per hg and that of oranges
is sold at 0.6 euro per hg.

Applying a special industrial process, starting from “base” marmalades, one
can get “flavored marmalades” (“cinnamon orange” and “lemon and lime”).
Lemon and lime is sold at 1.8 euro per hg and cinnamon orange at 1.4 euro per
hg. In the special process, no product is lost but there is an additional cost
(0.4 euro per hg) and more time is needed (3 hours for lemon marmalades and
2 hours for orange).

Each year, the company has 6000 labor hours and can buy a maximum of
4000 kg of fruit. Formulate a LP problem to maximize profits.

8.6 Quickies

Question 8.6.1. What is a binary variable?

Question 8.6.2. What is a IP problem?

Question 8.6.3. A IP problem has been solved and the optimal value of the
objective function is 2.78. Is this possible?

Question 8.6.4. In a LP problem, the feasible set is unbounded. Might the
problem admit just one solution or the number of solutions is necessarily infi-
nite?

Question 8.6.5. The solution to an IP problem is obtained by solving the
corresponding LP problem and then rounding the solution. True or false?

86



Solutions to exercises

87





8.6. Quickies

Probability

1.6.1 The value of the buildings in millions of euros is a random variable X
whose values are x1 = 13, x2 = 11 and x3 = 10 with probabilities p1 = 0.3,
p2 = 0.5 and p3 = 0.2. The expected value of x is

E (X) = 13× 0.3 + 11× 0.5 + 10× 0.2 = 11.4

1.6.2 Let S be “the travel is successful” and “+” be “the members’ opinion
is positive”. Before the arrival of the two, we have P (S) = 0.8 and therefore
P (S) = 0.2. Moreover, we know that P (+|S) = 0.9 and P (+|S) = 0.8. From
these equations we compute P (+|S) = 0.1 and P (+|S) = 0.2.

As the members’ opinion is still unknown, we have to compute both P (S|+)
and P (S|+). Using Bayes’ theorem we have

P (S|+) =
P (+|S)P (S)

P (+|S)P (S) + P (+|S)P (S)

=
0.9× 0.8

0.9× 0.8 + 0.2× 0.2
=

0.72

0.76

=
18

19
' 0.9473

and

P (S|+) =
P (+|S)P (S)

P (+|S)P (S) + P (+|S)P (S)

=
0.1× 0.8

0.1× 0.8 + 0.8× 0.2
=

0.08

0.24

=
1

3
' 0.3333

Decision problems

3.5.1 There are 4 nodes: one decision node (the Price List), two event nodes
(the Competitor price list and the orders)and one result node (the final Profit).
The profit depends on the other 3 nodes. The company price list depends on
the competitor price list, because the decision is made when the competitor
list is known. Orders depend on both price lists. The ID is displayed in Figure
1.

4.4.1 1. The DT is shown in Figure 2. The optimal decision is to do the
research. The expected profit is 10 millions euros.

2. to compute the value of perfect information, look at the DT in Figure
3. The root node value is 19 millions euros and so the value of perfect
information is 9 millions euros.

3. from the DT in Figure 4 we know that the value of sample information
is 6.7 millions euros. So we should not ask the opinion to the expert .

4.4.2 The DT is shown in Figure 5. Note that:
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Price List? Profits

CompetitorOrders

Figure 1: Influence diagram for problem 3.5.1
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Figure 2: DT for problem 4.4.1.
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Figure 3: DT for problem 4.4.1 with perfect information.

• the company may withdraw even when it has been shortlisted

• the material cost is to be taken into account only when the bid is accepted

• acceptance percentage decreases if the bid increases

4.4.3 The ID is shown in Figure 6 and the corresponding DT is that in Figure
7.

The use of software transform the scenario in one of perfect information.
The new DT is shown in Figure 8.

The expected value of perfect information is 240− 40 = 200 and this is the
maximum price to pay for the software.

Interviews are imperfect information. Let S be the event “employee bets”;
we have P (S) = 0.6 and P (S) = 0.4. Let C be the event “colleagues say he
bets”. We have P (C|S) = 0.5 and P (C|S) = 0.95. As sources of information,
the employee’s colleagues are very reliable when he does not bet and completely
unreliable when he bets. Applying Bayes’ theorem (see 1.3.2) we compute the
needed conditional probabilities, i.e.

P (S|C) =
P (C|S)P (S)

P (C|S)P (S) + P (C|S)P (S)
=

0.5× 0.6

0.5× 0.6 + 0.05× 0.4
= 0.9375

91



8. LP examples

16.7

72.6

0

72.6

0

−8.7

0

190

−10

190

−10

po
si
ti
ve

op
in

io
n

0.
23

negative
opinion

0.77

res
ea

rch

−10

do not research
0

res
ea

rch

−10

do not research
0

eff
ec

tiv
e

0.4
13

0

20
0

not effective
0.5870
0

eff
ec

tiv
e

0.0
06

5

20
0

not effective
0.9935
0

Figure 4: DT for problem 4.4.1 with sample information.

and

P (S|C) =
P (C|S)P (S)

P (C|S)P (S) + P (C|S)P (S)
=

0.95× 0.4

0.95× 0.4 + 0.5× 0.6
' 0.5588.

The decision tree is shown in Figure 9.

The root node is worth 110 euros. Thus, the EVSI is 110−40 = 70 euros. As
the cost of interviewing the other employees is 150 euros, the manager should
not interview his colleagues.

5.3.1 Let u(x) = 1 − e−x/R be the utility function. The inverse function is
u−1(x) = −R ln(1 − x). The “new product” option has certainty equivalent
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Figure 5: DT of problem 4.4.2.

Fire or
wait?

Profit
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S S

fire 0 0
wait 400 -500

Figure 6: ID for problem 4.4.3. S is the event “employee bets”.

given by

z = u−1(0.7u(380) + 0.3u(180))

= −R ln
(

1− 0.7(1− e−380/R)− 0.3(1− e−180/R)
)

= −R ln
(

0.7e−380/R + 0.3e−180/R
)

= −R ln
[
e−380/R(0.7 + 0.3e200)

]
= −R ln e−380/R −R ln

(
0.7 + 0.3e200/R

)
= 380−R ln

(
0.7 + 0.3e200/R

)
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Figure 9: DT for problem 4.4.3 with sample information.

To compare this with the “certain” option, worth 300, we should compare
g(R) = R ln

(
0.7 + 0.3e200/R

)
with 80. Using a computer, we list some values

of g (see Table 1). Table 1 shows that 80 corresponds to a value of R∗ between
200 and 250. A numerical comparison shows that R∗ ≈ 229.. Thus

• for a subject with R < 229 (more risk averse), the optimal decision is not
to develop a new product

• for a subject with R > 229 (less risk averse), the optimal decision is to
develop a new product

• for a subject with R ≈ 229 both decisions are equivalent.
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R g(R)

10 187.960272
50 141.893784

100 107.045861
150 91.309894
200 83.147044
250 78.275729
300 75.068868
350 72.807196
400 71.130045

Table 1: Values of g(R) = R ln
(
0.7 + 0.3e200/R

)
.

Linear programming

6.4.1 Let x and y be the tons of production of pipes of type A and AA. The
problem can be formulated as follows:

max 31x+ 39y
s.t. x+ y ≥ 10000 (min. total prod.)

5x+ 7y ≤ 56000 (max work hours)
x, y ≥ 0 (non negative variables)

The graphical solution is shown in Figure 10
the objevtive is 334000 in (7000, 3000), 310000 in (10000, 0) and 347200 in

(11200, 0). The maximum revenue is reached when the production is 11200
tons of type A pipes and no type AA pipes.

6.4.2 Let x and y be the kg to buy each month from supplier 1 and 2. The
LP model is :

min 20x+ 30y
s.t. 5x+ 10y ≥ 90 (minimum di A)

4x+ 3y ≥ 48 (minimum di B)
0.5x ≥ 1.5 (minimum di C)
x, y ≥ 0 (non negative var.)

The graphical solution is shown in Figure 11
The objective is 420 in (3, 12), 312 in (8.4, 4.8) e 360 in (18, 0). The mini-

mum is reached when buying 8.4 kg from supplier 1 and 4.8 kg from supplier
2.

7.6.1 There are 3 decision variables, the number of boxes to produce. As left
biscuits are being sold at the same price, we should take into account non
integer solutions as well.

1. The optimal solution is to produce 5 chocolate chip boxes, 23 twists boxes
and no pecan chip box. Total revenue is 491.

2. Not binding constraints are those of chocolate and nuts, because the
optimal solution does not exhaust them.
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x

y

1 2

(7000, 3000)

(10000, 0)

(11200, 0)

Figure 10: Graphical solution to problem 6.4.1.

3. In the optimal solution 5 pounds of chocolate are used (45 are left).

4. The Store should not modify the optimal plan, because it is, obviously,
optimal.

5. Pecan chips are missing from the optimal solution because their revenue
is too low. To make them appear in the optimal solution, their unit
revenue should increase by (minus) the reduced cost 3.33 to reach 28.33.

6. Sugar is a binding resource and therefore with more sugar available the
optimal solution could change. Allowable increase for sugar is +∞ and 7
is thus within this bound. As sugar shadow price is 1.89 the revenue will
increase by 7× 1.89 = 13.22.

7. Allowable increase for chocolate is 19.66, thus the proposed increase (from
20 to 24) leaves the optimal plan unchanged. Revenues will by 5×4 = 20
to 511.

7.6.2 1. Let x1 be the number of acres planted with wheat and x2 those
planted with corn. The revenue for each acre is the the revenue per ton
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x

y

123

(3, 12)

(8.4, 4.8)

(18, 0)

Figure 11: Graphical solution of problem 6.4.2.

times the tons per acre. The LP model is

max 150x1 + 200x2
s.t. x1 + x2 ≤ 45 (total area)

5x1 ≤ 140 (max sell wheat)
4x2 ≤ 120 (max sell corn)
6x1 + 10x2 ≤ 350 (max labor hours)
x1, x2 ≥ 0

and its optimal solution is x1 = 25 and x2 = 20, with a revenue of 7750.
Wheat and corn constraints are not binding, with slacks 15 t of wheat
and 40 t of corn. Area and labor constraints are binding.

2. x1 coefficient range of allowable change is (−30,+50); that of the coeffi-
cient of x2 is (−50,+50). Area shadow price is 75, with allowable increase
of 1.2 and allowable decrease of 6.66; labor hours shadow price is 12.5,
with allowable increase of 40 and allowable decrease of 12.

3. If the farmer had only 40 acres there would be a decrease of 5, which is
allowable. Revenue will decrease by 75 (reduced cost) times 5 (change),
i.e. 375, to 7375.

4. If the wheat price dropped to 26 the revenue per unit would be 130, 20 less
than before. This decrement is allowable and the revenue would decrease
by 20 times 25 (the number of acres planted with wheat), 25× 20 = 500,
to 7250.
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5. As the allowable decrease is 15, moving from 140 to 130 will not change
the solution.

Note that the problem could have been solved by the graphical method.

7.6.3 1. The optimal portfolio is made up of 70 bonds of type 2 and 30 of
type 3, with a revenue of 9530. The binding constraints are the first and
the third.

2. If the price of bond 2 raised to 96, an increment of 1, allowable by the sen-
sitivity analysis, the optimal solution would not change and the revenue
will increase by one for each bond 2, i.e. by 70 dollars.

3. The increase of bond 3 price to 100 is allowable and then the solution
will not change and the profit will increase by 120 dollars.

4. The issue of 10 more bonds is allowable and will not change the optimal
solution. The bonds will be shared proportionally to bond 2 and bond
3 types, according to the current optimal plan (i.e. 7 of type 2 and 3
of type 3). Bond 1 has a reduced cost of -3 and therefore its price must
increase to 95 to make it enter the optimal solution.

7.6.4 1. The optimal plan is to produce 20000 kg of orange crates and 80000
kg of orange juice. The maximum profit is 42000.

2. Total oranges and minimum crates constraints are binding.

3. Orange crates: unit profit can decrease by any amount or increase by
less than 0.15; orange juice unit profit can increase by any amount or
decrease by less than 0.15.

4. Yes. Let C be the optimal quantity of orange to be sold in crates,
C ≥ 20000. If C > 20000 (not binding constraint), then 20000 could be
increased without changing the optimal solution and the optimal profit.
A negative shadow price points out that by increasing 20000 by one we
get a reduction in the profit. Thus, a negative shadow price is not com-
patible with C > 20000 and therefore C = 20000, i.e. the constraint is
binding.

8.5.1 The total quantity available at the stores, 350 = 100 + 250, is equal to
the quantity demanded by the wholesalers, so that the plan is surely feasible
(the feasible set is not empty). Boxes can not be further divided so variables
must be integer.

With 2 stores and 3 wholesalers, there are 6 (2× 3) possible lines of trans-
port: AC, AD, AE, BC, BD, BE. we must decide how many boxes to move on
each line. Let xAC , . . . , xBE the number of boxes to be moved.

C gets xAC and xBC and therefore xAC +xBC ≥ 50. The same can be said
for the other two wholesalers. For the stores, we must ask that the quantity
that goes out of the store is not greater than the store initial quantity. For
store A we have xAC + xAD + xAE ≤ 100, and similarly for B.
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The IP problems is:

min 5xAC + 10xAD + 12xAE + 3xBC + 4xBD + 9xBE

s.t. xAC + xAD + xAE ≤ 100 (A)
xBC + xBD + xBE ≤ 250 (B)
xAC + xBC ≥ 50 (C)
xAD + xBD ≥ 120 (D)
xAE + xBE ≥ 180 (E)
xAC , xAD, xAE , xBC , xBD, xBE , integers

and its solution is xAC = 50, xAD = 0, xAE = 50, xBC = 0, xBD = 120 e
xBE = 130.

8.5.2 Decision variables are the quantities of lemon and orange marmalades,
base and special: let x1 the production (in hg) of lemon marmalade, x2 the pro-
duction of lemon and lime marmalade, x3 the production of orange marmalade
and x4 the production of cinnamon orange marmalade.

There is an additional decision variable, the total fruit to be bought, x5,
which is not given. For this quantity there is only an upper bound. To buy
the maximum of fruit is not necessarily the best thing to do as there is another
constraint (labor hours) and it can be that the optimal plan will not use all the
available fruit. Unused fruit will therefore be a cost unbalanced by revenues.
Variables are real numbers.

The objective is the profit. Revenues are given by 0.7x1 + 0.6x3 + 1.8x2 +
1.4x4. Costs are 0.3x5 for buying fruit and special process 0.4x2 + 0.4x4. The
objective function is

0.7x1 + 0.6x3 + 1.8x2 + 1.4x4 − 0.3x5 − (0.4x2 + 0.4x4) =

0.7x1 + 1.4x2 + 0.6x3 + x4 − 0.3x5

to be maximized.
Fruit constraint is x5 ≤ 4000.
Labor hours are 6000. Those used in the process are x5 + 3x2 + 2x4, and

therefore x5 + 3x2 + 2x4 ≤ 6000.
These constraints are not enough to set up the model. In fact, for each

kg of fruit (i.e. of x5) we get 3 hg of lemon marmalade (x1) and starting
from the latter we get lime and lemon marmalade (i.e. x3). Therefore, the
total production of lemon marmalade (base and special) must sum up to the
total lemon available, x1 + x3 = 3x5. Doing the same for oranges we get
x2 + x4 = 4x5.

The LP problem is:

min 0.7x1 + 1.4x2 + 0.6x3 + x4 − 0.3x5
s.t. x5 ≤ 4000 (max fruit)

x5 + 3x2 + 2x4 ≤ 6000 (max labor hours)
x1 + x3 − 3x5 = 0 (tot lemon)
x2 + x4 − 4x5 = 0 (tot oranges)
x1, . . . , x5 ≥ 0

and its solution is x1 = 11333.333, x2 = 666.667, x3 = 16000, x4 = 0, x5 =
4000. The profit is 17266.667.
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Probability

1.7.1 No, because the expected value of a random variable always lies between
the minimum and the maximum of the values the random variable can take.

1.7.2 No, because B and B are two different events and the conditional prob-
ability distribution they generate are different.

1.7.3 Yes, because A and A are mutually exclusive events and A∪A = Ω and
therefore their probabilities, given B must sum up to 1.

1.7.4 No. From the equation

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.7− P (A ∩B)

we see that P (A ∪B) is less or equal to 0.7.

1.7.5 Yes. If A implies B then P (A) ≤ P (B) and then P (B) can be any
number greater or equal to 0.4, e.g. 0.6.

Decision problems

3.6.1 3: decision, event and result node.

3.6.2 No, informational arcs always end in a decision node.

3.6.3 Yes, conditional arcs end in an event node or in a result node.

3.6.4 As A is connected to B by a conditional arc the decision maker assigns
the probabilities in B after A has occurred. Thus, probabilities in B are con-
ditional on possible outcomes in A.

3.6.5 The ID is drawn in Figure 12 and it is almost identical to that at the
beginning of this chapter:

4.5.1 No, because the value of an event node is the expected value of the al-
ternatives and as such is bound to be between the minimum and the maximum
of them.

4.5.2 p = 0.4, because 10× 0.4 + 20× 0.6 = 16.

4.5.3 Yes, the optimal choice is 2 because the expected value of the event node
will always be less than the other option.

4.5.4 No, because the value of option 2 lies between the minimum and the
maximum of the event node.

4.5.5 Yes, because the value of option 2 is always greater than or equal to the
maximum of the value of the event node.

5.4.1 As A’s certainty equivalent is less than the expected value of the lottery
(which is 30), A is risk averse.
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Buy? Result

Market

Figure 12: ID of the Buy/Not buy shares problem

5.4.2 The expected value of the lottery is E = 0.01x; as the person is risk
averse, the certainty equivalent z should be less than E, z < E. Given that the
person bought the ticket, its price should be less than the certainty equivalent
z, i.e. 1 < z. Therefore, 1 < E, i.e. 1 < 0.01x, or x > 100

5.4.3 The certainty equivalent is

z(X) = u−1(p(u(x1)) + (1− p)u(x2)) =
(

0.3
√

10 + 0.7
√

20
)2

= 16.6396

5.4.4 To sign an insurance contract means to exchange a “certainty equivalent”
(the premium for risk) for an uncertain thing (being alive at a certain future
time). Both customers have the same life expectancy so the only difference is
in the way they see at the potential risk of dying, which is identical for the two
people. The one who is more risk averse (the one with the lesser R) is more
willing to pay for the insurance and therefore should be the one to call.

5.4.5 As the expected value of the change is 30000× p+ 0× (1− p) = 30000p,
the current job would be preferred if 30000p < 10000, i.e. p < 1/3.

Linear programming

6.5.1 The slack is the quantity of the resource that remains unused in the
optimal solution.

6.5.2 Linear means that every mathematical object in a LP problem is a linear
(i.e. first degree) equation or inequality in the decision variables.

6.5.3 A constraint is binding if in the optimal solution the corresponding re-
source is exhausted or, equivalently, that the equality relation is true.

6.5.4 Yes, because the order of the constraints does not matter (it does not
change the feasible set)
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6.5.5 The feasible set is the set whose elements are the solution of the con-
straints system. It is the set of values that solve the constraint system.

7.7.1 The optimal solution changes and the profit increases by 2.

7.7.2 No. With the additional unit, the profit will increase by 2 and with a
cost of three the balance will be negative (loss of 1).

7.7.3 Yes. The optimal solution does not change but the value of the objective
does change.

7.7.4 The reduced cost is the minimum amount by which a coefficient of the
variable in the objective function must change to make the variable appear in
the optimal solution, or to make it disappear if it already appears.

7.7.5 No. If there are resources left, the shadow price necessarily vanishes.

8.6.1 It is an integer variable that takes only two values, 1 and 0.

8.6.2 It is a problem in which variables can take only integer values.

8.6.3 Yes, because the integer constraint is a variable constraint and does not
interfere with the coefficients of the objective function that can take non integer
values as well.

8.6.4 The problem can admit just one solution, because even if the feasible set
in unbounded, the minimum or the maximum of the objective function can be
on the boundary of the set.

8.6.5 False. Rounding (and truncating) are not valid methods to get the so-
lution of an IP problem.
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