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This paper is concerned with the interaction between long-crested random waves and a submerged
horizontal cylinder in deep water. The analytical linear predictions are obtained by extending the
classical linear solution for the diffraction of monochromatic waves by a horizontal submerged
cylinder, to the random waves by applying the theory of wind-generated waves. It is obtained that
the wave pressure, which represents a random Gaussian process, has an amplitude that increases on
the upper half-cylinder and decreases on the lower half-cylinder, with respect to the wave pressure
amplitude at the same depth in an undisturbed wave field. The random wave force is derived by
integration of the wave pressure on the cylinder. Both the horizontal and the vertical force
components have equal standard deviation and very narrow spectra. By applying the
quasideterminism theory, is then obtained that both the wave pressure and the wave force on the
cylinder, when a very high wave occurs, are quasi-impulsive in the time domain. Finally, the
analytical predictions are compared with the data of a small-scale field experiment. It is shown that
the linear theory well predicts the drop of the propagation speed of the wave pressure on the
cylinder. Some discrepancies have been noted for the standard deviation of the random wave force,

which is overestimated by analytical predictions. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2213867]

I. INTRODUCTION

The problem of the interaction between gravity waves
and a submerged horizontal circular cylinder in deep water
was first treated by Dean,' who proved that, according to the
linear theory, the surface waves suffer a phase shift in pass-
ing over the cylinder. He also obtained the remarkable result
that, to the first order, there is no reflected wave from the
cylinder.

Ogilvie,2 following Ursell’s earlier paper,3 obtained the
linear velocity potential and the oscillatory force. Arena’
found that the velocity potential in Ogilvie’s paper lacks an
additional time periodic term, constant in space, that modi-
fies the wave pressure but has no influence on the wave
force.

Meclver and Mclver’ and Palm® obtained analytically that
there is no reflected wave to the second order either. These
theoretical results agree well with the experimental evidence
by Chaplin,7 which showed that the reflection is negligible
either to the second or to the third order. Chaplin7 also ob-
tained that the oscillatory force on the submerged horizontal
cylinder may be as much as 50% less than the linear theory
prediction.

In this paper, according to the two-dimensional theory of
wind-generated waves (Longuet-Higgins® and Phillips’), the
analytical linear solution is obtained for the interaction be-
tween long-crested random waves and a submerged horizon-
tal cylinder in deep water. The random wave pressure on the
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surface of the submerged circular cylinder is first compared
with the wave pressure at the same depth in the undisturbed
field.

The random wave force on the submerged horizontal
circular cylinder is then obtained by pressure integration on
the cylinder. In particular the standard deviation of the wave
force is obtained as a function of the standard deviation of
the surface displacement in an undisturbed wave field. Both
the horizontal and the vertical force components are random
Gaussian processes, to the first order in a Stokes expansion.
Furthermore they have very narrow spectra, as was pointed
out first by Boccotti'™!! with experimental evidence and re-
cently by Arena'? who investigated the statistical properties
of the random wave force and obtained the theoretical spec-
trum of the force process.

Time histories of wave pressure and of wave force on the
cylinder, when a very high wave occurs on it, are obtained
by applying the quasideterminism theory (Boceotti'" and
Boccotti et al.'*). This theory enables us to predict the wave
force components and the wave pressure on the cylinder
when either an exceptionally high wave occurs over the cyl-
inder or an extremely large force occurs. In particular the
drop of the propagation speed of the wave pressure on the
cylinder is analyzed. A physical interpretation for this phe-
nomenon was suggested by Ogilvie,2 which is satisfactory
for a large value of the cylinder radius. Recently by experi-
mental evidence Boccotti'' found a reduction of about 50%
of the propagation speed of the pressure head waves at a few
horizontal submerged cylinders in the field, and he suggested
a physical interpretation based on a linear inviscid pattern
holding whatever the cylinder radius.

© 2006 American Institute of Physics
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FIG. 1. Reference sketch.

The theoretical predictions are finally compared with
the results of a small-scale field experiment (Boccotti'™!" and
Arena'?).

Il. LONG-CRESTED RANDOM WAVES
ON A SUBMERGED HORIZONTAL CYLINDER

The horizontal circular cylinder, of radius a, is sub-
merged beneath waves in an infinite depth and has its center
at point x=0, z=—h (see Fig. 1). The incident random wave
train travels in the direction opposite to the x axis. The wave
crests are parallel to the axis of the cylinder. The motion is
assumed irrotational with inviscid and incompressible fluid.

Following the general theory of wind-generated waves,
we define a random sea state as the sum of an infinitely large
number N of periodic waves having small amplitude «; and
angular frequencies w; different from each other. The random
phase angles {; are uniformly distributed over the range
0<{;<2m. Both the wave elevation and the velocity poten-
tial, with the above-mentioned hypotheses, represent a ran-
dom stationary Gaussian process of time.

Let the potential of the incident waves in a random two-
dimensional sea state be the real part of

N
¢i(r,0,1) = gE cvjwjTl exp(=k;h)explk;r exp(-i6)]
j=1

Xexp[—i(wjt+ g”j)], (1)

where g is the gravitational acceleration, ¢ is the time, and
kaw]g/ g is the wave number. The surface displacement is
then

N

J=1

ﬂi(xat)

and its variance
olzf E(w)dw, (3)
0

where E(w) is the frequency spectrum of the surface dis-
placement in an undisturbed field, defined as

for j such that o < w; < w+dw.

E(w) = %2 ajz»
4)
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FIG. 2. The diffraction coefficient C, on a submerged horizontal cylinder
for fixed values of the radius (ka=0.2 and ka=0.4) and of the submergence
of the cylinder center (h/a=2 and h/a=5). The mean JONSWAP spectrum
has been assumed.

The total velocity potential ¢ is obtained adding the ve-
locity potential of the scattered wave to the one of the inci-
dent wave ¢; [Eq. (1)]. It is given by

N
_ —1 —k:h :
¢(r,0,1) = gz‘; @jw; e [- P(r, 6, w))sin(w;t + {;)
=

+0(r, 0,0))cos(w;t + {)) ], (5)
where
P(r,0;0) = & > e,D,[sin(n6) — S, cos(nb)]
+ £ n=1
+ E nsn(SsAn - Bn) s (6)
n=1
o(r,0;w) =1+ 5 > &,D,[cos(nb) + S, sin(nb)]
1+ Ss n=1
- E nsn(An + San) s (7)
n=1

being ¢,(ka,kh) (n=1, 2, 3,
nite set of equations

..) the solutions of the infi-

“ 2n
€, +(ka)2"2 MA & =(ka) )

nl(m—-1)" """ n!

(8)
Functions A,, B,, D,, and S, are defined, respectively, as

2 2kh
+—|:exp( 2kh)P f 2L

Anll) = n(2kh)" u
(m—1)! _
mEl (2kh)" ] n=l, ©
B,(kh) = 2 exp(— 2kh) 7 (10)

n!
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(kr)l‘l
k) (ka™”

D, (kr,ka) = (11)

[

S, (ka,kh) = 2 exp(— 2kh) >,

n=1

En

n-1)1

(12)

where the symbol P denotes the principal value of the
integral.

The diffraction coefficient C, of the wave pressure

The wave pressure is obtained from Bernoulli equation
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Ap=-p=, (13)

and its variance [oﬁE <Ap*(r,0,1)>] is given by

o

o= (pg)’ f E(w)exp(= 2kh)[P*(r, 6,w)
0

+0%(r,0,0)]dw. (14)

We define the diffraction coefficient C » of the wave pressure,
the ratio of the standard deviation of the wave pressure at a
fixed point (r, 6), to the standard deviation of the wave pres-
sure Ap[=—p(d¢,;/t)] at the same depth (z=—h+r cos 6) in
an undisturbed wave field. From the definition it follows that

e’}

E(w)exp(=2kh)[P?(r, 6,w) + Q*(r, 6,0)dw

0

Cy(r,0) =

Figure 2 shows the diffraction coefficient (15) on a sub-
merged horizontal cylinder for fixed values of the radius and
of the submergence of cylinder center. The mean JONSWAP
spectrum (Hasselmann ef al.'s) has been assumed. As we
may see the wave pressure increases (with respect to the
wave pressure at the same depth in an undisturbed wave
field) on the upper half-cylinder and decreases on the lower
half-cylinder. The maximum diffraction coefficient C Prras is
at the top of the cylinder (6=0), the minimum C, _is at the
cylinder bottom (6=).

Let us note that, for a fixed value of 4/a, the diffraction
effects increase as the radius ka increases. The diffraction
effects decrease as kh increases, for a fixed value of ka.

We have also that Cpmax is slightly affected by spe-
tral bandwidth; its value decreases as the spectrum gets
narrower.

lll. THE RANDOM WAVE FORCE

The linear wave force on the cylinder (per unit length) is
obtained by integrating the pressure fluctuations Ap on the
solid cylinder. Its components are

N

F(1)=-2mpg>, ajk;" exp(-kh)e (1 +52)7"
j=1

Xcos(wit — ¢+ ;). (16)

f E(w)exp(— 2kh)exp(2kr cos 6)dw
0

(15)
|
N
F (1) =-2mpg 2 ak;" exp(-kh)e,;(1+52,) 7"
j=1
Xsin(w;t — ¢+ {;), (17)
where
@;=arctan(S,;). (18)

The horizontal and vertical force components have equal
standard deviation, that is given by

op=27pg \/f E(w)k™2 exp(— 2kh)£%(1 + Sﬁ)_ldw,
0
(19)

where E(w) is the frequency spectrum of the incident waves

[Eq. (4)].
It is convenient to define dimensionless coefficient

o
=, 20
27Tpg2w;20' 20)

where o and w, are, respectively, the standard deviation of
the surface displacement and the peak frequency of the inci-
dent waves. This coefficient is given by
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f= \/ f ocE(w)(w/wp)_4 exp(=2kh)et(1 + 59 'dw / j mE(w)dw, (21)
0 0

and is shown in Fig. 3 as a function of ka, for fixed values of
hla.

IV. THE TIME HISTORIES OF WAVE PRESSURES
AND WAVE FORCES ON THE CYLINDER
WHEN EITHER A VERY HIGH WAVE,

OR A VERY LARGE FORCE, OCCURS

13 and Boccotti
) enables us to foretell what happens when a very
large wave height occurs at a fixed point in a random wave
field (very large wave height with respect to the mean wave
height at this point). The theory, which is derived analyti-
cally, may be applied either for waves in an undisturbed field
or for waves in a nonhomogeneous field.

In this paper the quasideterminism theory is applied in
two different forms, either to foretell what happens when a
very large height of the wave pressure occurs at a fixed point
(r,0) on or near the cylinder at a fixed instant ¢, (see Sec.
IV A) or to foretell what happens when a very large wave
force occurs on the cylinder at a fixed instant 7, (see Sec.
IV B).

Let us note that we may apply the quasideterminism

The quasideterminism theory (Boccotti

et al.'

E<77ph(rm aovt)Fx(t + T)> - <7]ph(r07 aa’t)Fx(t +T- T*)> .

theory to the wave force process directly, the wave force
being a stationary Gaussian random process of time.

The instant 7, when the high wave occurs is convention-
ally defined as the instant in which the crest of the highest
wave occurs at the fixed point.

A. What happens if a very high wave occurs
over the cylinder

If a wave of the pressure fluctuation with a given crest-
to-trough height H occurs at a fixed point (r,, 6,) and H is
very large with respect to the mean wave height at this point,
we may expect the pressure fluctuation 7, [=Ap/(pg)] to
be very close to the deterministic form

Nour, + Ar,0,+ A6,1,+T)
H
= ER Npn(F s 00 ) (1, + A1, 0, + A0t + T))

— (WP 00 ) iy + Ar, 6, + A0t + T=T))/
[< ”;h(rm au’t)> - <7]ph(rw 6o’t) nph(rm au’t + T*)>]’ (22)

and we may expect the force components F, and F, to be
very close to the deterministic form

Ft,+T)=

2 <7]§h(r0? aa’t)> - <7]ph(r07 6o’t) nph(rov ao’t + T*)>

E(nph(ro’ G{I’I)Fz(t + T)> - <77ph(r0’ 009I)Fz(t +7T- T*)> .

(23)

Fz(to+ T) =

where T" is the abscissa of the absolute minimum of the
autocovariance function of the wave pressure, defined as

l,b(T) = <77ph(rm (90,1‘) nph(ro’ (90,t + T)> (25)

Equations (22)-(24) may be rewritten as functions of the
frequency spectrum E(w) of surface incident waves. We ob-
tain, respectively,

2 <7][2;h(rm 00at)> - <7]ph(roa aoat) 7]ph(rm 00,1 + T)>

(24)

Non(r, + Ar, 0, + A0,1,+T)

H o]
= Ef E(w)e_Zkh{[P1P2 + QIQZ]
0

X[cos(wT) - cos((T - T"))]+ [P0, - P,0)]

X[sin(wT) — sin(w(T - f))]}dw/

jw E(w)e‘Zk”[P% + Q%][l —cos(wT")]dw; (26)
0
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FIG. 3. The dimensionless coefficient f [Eq. (21)] as a function of ka for
fixed values of the submergence of cylinder center #/a. The mean JON-
SWAP spectrum has been assumed.

H o0
F(t,+T)=- 27Tpg5f E(w)k™!
0

Xexp(— 2kh)%{Pl[cos(wT)
V1 +Sg

—cos(w(T-T"))] - Q,[sin(wT)

—sin(w(T - f))]}dw/

f”’ E(w)exp(— 2kh)[P% + Q%][l —cos(wT")]dw;
0

(27)
F(t,+T)=- 271'pg%1foc E(w)k™!
0
Xexp(- 2kh)v1—+sz{Pl[sin(wT)
—sin(w(T=T"))] + Qy[cos(wT)
—cos(w(T - Tk))]}dw/
Jw E(w)exp(— 2kh)[P% + Q%][l —cos(wT")]dw,
0
(28)
where
P, =P(r,0,0); Q,=0(r,b,w)),
(29)

P,=P(r,+Ar,0,+ Abw); O, =0(r,+Ar,0,+Ab,w).

B. What happens if a very large force occurs
on the cylinder

If a very large wave force (very large with respect to the
mean wave force) with an amplitude of F occurs on the
cylinder at the time 7,, we can foresee the force components
in the time domain. Specifically, if at a time 7, a very large
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FIG. 4. What happens when a positive peak F of the horizontal force F, on
the cylinder occurs (the peak occurs at time instant 7=0): the time histories
of the force components F, and F, for ka=0.2 and kh=0.6. The mean
JONSWAP spectrum has been assumed for the surface displacement.

value F (positive or negative) of the horizontal force F, oc-
curs, we may expect the force components to be very close to
the deterministic form:

_ AF(F(t+T1))

Ft,+T) = ]-'—(F)z((t» (30)
_ AF(OF (t+T))

Ft,+T)= ]—‘—(Fi([» (31)

and, as function of E(w):

oo

2
E(w)k™% exp(— 2kh) | 81S2 cos(wT)dw
+

&

F.(t,+T)=F 0

e 2 b
j E(@)k™ exp(-24h) glszdw

0 + &
(32)
E(w)k2 exp(- 2kh)1 ‘S2 sin(wT)dw
+ &
FZ(t(1+T)=JT ’ o 2
&
E(w)k™2 exp(- 2kh)——d
JO (w)k™ exp( )1+S§ w
(33)

Figure 4 shows the time histories of the force components F',
and F, when a positive peak F of F, occurs on a cylinder
(ka=0.2, kh=0.6 and the mean JONSWAP spectrum have
been assumed).

As we can see the random wave force is quasi-impulsive
in the time domain (let us recall that the wave force is sinu-
soidal in the time domain for monochromatic waves). We
have also that both the positive peak F, - and the negative
peak F, (in absolute value) of the vertical force are slightly
smaller than F (value of the positive peak of F,). The abso-
lute values of negative peaks F, = are 18% smaller than the
maximum F,. These differences are a bandwidth effect, and
indeed they increase as the bandwidth increases. As an
example with the Pierson-Moskowitz spectrum (Pierson and
Moskowitzm), which has a bandwidth greater than the
JONSWAP spectrum, the absolute value of F’ x . Proves to be
21% smaller than the maximum of F,.
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FIG. 5. Experiment gauges: the 16 pressure transducers assembled on the
median vertical section of the solid cylinder (transducers 1-8) and on the
radiant crown (transducers 1'—8").

Let us note that with a similar procedure, we can foresee
the force components when a very large value F (positive or
negative) of the vertical force F, occurs on the cylinder.

V. COMPARISON WITH THE DATA
OF A SMALL-SCALE FIELD EXPERIMENT

The small-scale field experiment was carried out off
the beach of Reggio Calabria (eastern coast of the Strait of
Messina). Standard deviation of the surface displacements in
an undisturbed field was between 0.05 m and 0.1 m, and
peak period was between 1.8 s and 2.6 s.

At first a cylinder and a radiant crown were assembled.
The cylinder had radius a of 0.45 m, length of 4 m, and
submergence h of its center between 1.35 m (low tide) and
1.55 m (high tide). The radiant crown, in an undisturbed
wave field, had equal radius, equal submergence and equal
position of the solid cylinder. Afterwards a cylinder and a
radiant crown with a=0.225 m and & between 1.125 m and
1.325 m were assembled.

The mean water depth was between 2.9 m (low tide) and
3.1 m (high tide). Eight transducers, assembled on the cylin-
ders [see Fig. 5(a)], measured the pressure fluctuations on the
median vertical section of the cylinder. From these transduc-
ers we estimate the wave force on the median section.

Eight transducers, assembled on the vertical radiant
crown [see Fig. 5(b)], measured the pressure fluctuations on
the water-equivalent cylinder.

Three ultrasonic wave probes measured the surface wave
elevation over the cylinder and in an undisturbed wave field.

During the experiment 581 records (381 with the 0.45 m
cylinder and 200 with the 0.225 m cylinder) were collected.
Each record had duration of 540 s, with a sampling rate of
10 Hz for each gauge (see Boccotti'' for more details).

In this paper only pure wind wave records (without over-
lapping swells) with dominant direction perpendicular to the
cylinder axis have been analyzed.

A. The diffraction coefficient C, of the wave pressure

Figure 6 shows the diffraction coefficients C,, measured
in three records. As we can see the theoretical C,, overesti-
mate the data, but confirm two experimental results: the C » is
greater than 1 in the upper half-cylinder and is smaller than 1
in the lower half-cylinder; the values of C, for O=/2
(transducer 3) and 6=3/2 (transducer 7) are close to 1.

Phys. Fluids 18, 076602 (2006)
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FIG. 6. The diffraction coefficient C, of the wave pressure, on the cylinder
surface. The continuous lines represent the theoretical distribution from Eq.
(12) with experimental values of ka and kh (frequency spectrum is the mean
JONSWAP).

B. The wave force components
1. The measured force

The experimental wave force on the cylinder has been
obtained from the wave pressures recorded by gauges 1-8
(see Fig. 5). In particular the wave force components for
each instant have been calculated from the eight values of the
wave pressure at that instant.

Figure 7 shows the experimental values of fr vs IF,
D‘F and f being coefficient (20) with o being the standard
deviation of respectively, horizontal force F, and vertical
force F_]: the left panel shows the data for the cylinder radius
a=0.45 m; the right panel shows the data for a=0.225 m.

As we may see, for a=0.45 m the values of fo and fr
are very close to each other, according to the linear theory
prediction; the mean value of fF / fF is equal to 0.997.

Some differences have been obtained for the
a=0.225 m cylinder, as we may also appreciate from Fig. 8§,
which shows the values of the quotient fF / fF (obtained
from data) vs ka. We have that fp / fp values tend to de-

0.025 0.015

Sre fra
0.02 4 0.01 -
0.015 1 > 0.005 -
0.01 . . fo 0 ‘ ‘ fo
0.01 0.015 0.02 0.025 0 0.005 0.01 0.015

FIG. 7. The experimental values offFK vs fr . Left panel: a=0.45 m cylin-
der. Right panel: @=0.225 m cylinder. )
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0.5 +
1 ka
0 T T T
0 0.1 0.2 0.3 04

FIG. 8. The experimental values of fFY/fF" vs ka, for cylinder radius
a=0.225 m. Dashed line gives the linear regression.

crease as ka increases. The linear regression (dashed line) is
over the range (0.92, 1.0) in the experimental range of ka.

2. Comparison between measured force
and analytical linear prediction

The experimental values of fr, and fF have been com-
pared with theoretical values of f obtained from Eq. (21). In
particular predictions have been obtained from the experi-
mental values of ka and kh, for a mean JONSWAP spectrum.

It is obtained that the experimental wave forces (and
therefore both fFV and fy ) are smaller than the linear predic-
tions. ' )

Figure 9 shows, for the =0.45 m cylinder, the values of
the quotient between the standard deviation OF, of the ex-
perimental horizontal force, and the standard deviation op of
the theoretical force, as a function of the Keulegan-Carpenter
number K. As we can see, for K close to 2 experimental
forces are as much as one half the analytical linear predic-
tion, in full agreement with the experimental evidence by
Chaplm We have also that the value of OF, lop decreases as
K decreases. Note that Chaphn (see also ‘Grue' b analyzed
the interaction between regular waves and a submerged hori-
zontal circular cylinder, at low Keulegan-Carpenter numbers;
he found that it is a strongly nonlinear phenomenon, which
even fully nonlinear models are not able to predict. The most
relevant result was the decay of the inertia coefficient to one
half of theoretical inviscid value (equal to 2), for K close to
2.5. In this paper a further confirmation of his result has been
found, for random sea waves. The nonlinear behavior of the
force is due to the interaction between the steady streaming
(viscous flow) attached to the cylinder and the incident or-

0.7
0.6 O-Fx /O-F ° °

0.5 - ° oes ey . 6
0.4 1
0.3
0.2
0.1
o :

0 1 2 3

FIG. 9. The a=0.45 m cylinder. The values of the quotient between stan-
dard deviation oF, of experimental horizontal force and standard deviation
o of theoretical force as a function of the Keulegan-Carpenter number K.
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FIG. 10. Comparison between experimental values of fr for the

a=0.225 m cylinder, and analytical predictions (continuous line) obtained
from Eq. (21) for a mean JONSWAP spectrum.

bital wavy flow. This interaction (Magnus effect) induces a
force that is 7 out of phase with the inertial force.

Finally Fig. 10 shows, for the a=0.225 m cylinder, the
comparison between the analytical f obtained from Eq. (21),
and the experimental values of fr . As we can see values of
fr./f are over the range 0.50 <frlf<0.75.

C. Application of the quasideterminism theory

The quasideterminism theory may be directly applied
from experimental data. Figure 11 shows the data of record
516 (ka=0.19 and kh=1.03); dotted lines show the pressure
fluctuation at the transducers 1-8 and the wave force com-
ponents, when a pressure head wave of a given very large
height H occurs at point (a,0) (transducer 1). They have
been obtained by means of Egs. (22)—(24). The time aver-
ages on the right-hand sides of these equations have been
obtained directly from the time series data of a 9 min record
including about 250 individual waves.

Continuous lines in Fig. 11 show theoretical predictions.
Specifically they show the time histories of the pressure

16=0) /‘\v/ \\\//\
2(0-1/4) N /\
36-n12) 'y SN e T
HO=3/47) s /“\\J// \/ < e
5(0=r) P — \//:\\\i
) S N \/
7O=3/27) o /\\_/ “\\/ =
BO=747) e Nt ™ P -
F. Iy i /\/
= N
2 1 o . ;

FIG. 11. Record No. 516 (ka=0.19 and kh=1.03). What happens when a
very large height of the pressure fluctuation occurs at transducer 1 (see
Fig. 5). Dotted lines are obtained from experimental data. Continuous lines
show analytical predictions obtained from Egs. (26)—(28), using experimen-
tal values of ka and kh; theoretical spectrum is the mean JONSWAP (all the
time histories are normalized).
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FIG. 12. The theoretical phase lags €53, €37, and g44 on
the solid cylinder, when a large pressure wave occurs at
\ 017 T point (a,0). Predictions are obtained from Eq. (26), for
g 3 (0=n'2) ka=0.26, and h/a=3.2; the mean JONSWAP spectrum
P — ——7(6=n3/2) has been assumed. Let us note that ¢;; gives the time
4. o “ o i )
= —_ that the wave pressure takes to pass from point i to
point j (points i and j have equal submergence and are
on the solid cylinder).
S 014 ) e
(8=n3/4)
s 0.\4%//08 — — = 6(6=n5/4)

fluctuation [Eq. (26)] and of the wave force components
[Egs. (27) and (28)] when a pressure head wave of given
very large height H occurs at point (a,0). Experimental val-
ues of ka and kh and the mean JONSWAP spectrum have
been assumed.

As we can see analytical predictions and data are very
close indeed. In particular both theoretical predictions and
data show that the pressure fluctuations suffer a phase shift in
passing over the cylinder (see next section) and the pressure
fluctuation at transducers 1 and 5 are in phase.

Let us note that, as a consequence of the finite band-
width of the spectrum, pressure fluctuations and wave forces
are quasi-impulsive in the time domain. Furthermore, we
have a confirmation of the results of the previous section: the
measured and calculated forces have equal periods and equal
spectra (see Arena'?). Therefore, the Magnus force, which
produces the reduction of the force amplitude, does not
modify the structure of force process in time domain.

1. The drop of the propagation speed of the wave
pressure on the cylinder

The drop of the propagation speed of the wave pressure
on a horizontal submerged cylinder was observed with ex-
perimental evidence by Boccotti.'' He analyzed the phase
shift between wave pressure at transducers 2 and 8, 3 and 7,
4 and 6 (see Fig. 5) and obtained that the pressure head wave
takes a time to pass on the solid cylinder that is greater than
on the equivalent water cylinder.

Specifically, by analyzing the records with the
a=0.45 m cylinder, he found that the wave pressure takes a
time &, to pass from point 2 to point 8 on the solid cylinder,
that is near 1.7 times greater than the time &,/¢: to pass from

point 2’ to point 8’ on the equivalent water cylinder (that is
€43/ 8513:=1.7). Furthermore with experimental evidence he
found €37/€3:7 =2 and g4/ €41 =2.3.

As for the records with the a=0.225 m cylinder he found
that the reduction of the propagation speed was somewhat
smaller.

The analytical predictions are obtained from Eq. (26).
Figures 12 and 13 show the analytical predictions for
ka=0.26, h/a=3.2, assuming the mean JONSWAP spectrum.
In particular Fig. 12 shows the phase lags e,g, €37, and g4 On
the solid cylinder, when a large pressure wave occurs at point
1l [having polar coordinates (a,0)]. Figure 13 shows the
phase lags &5/, €3/7/, and e4:4 On the equivalent water
cylinder, when a very large wave pressure occurs at point 1.
As we can see the linear theory well predicts the phase lag:
theoretical &,3/€5rgr, €37/€317:, and ey6/ €414 are equal to
1.67, 1.89, and 2.33, respectively.

As for the smaller cylinder (¢=0.225 m), by analytical
prediction (see continuous lines in Fig. 11) we obtain
828/82’8’= 173, 837/8317r= 192, and 846/84’6’=2'24'

In conclusion analytical linear predictions, obtained
from Eq. (26), agree well with the experimental evidence by
Boccotti.

VI. CONCLUSIONS

The analytical linear solution for the interaction between
two-dimensional wind-generated waves and a horizontal
submerged cylinder has been obtained, extending classical
Ogilvie’s solution (Ref. 2; see also Arena4).

It has been obtained that wave pressure amplitude in-
creases on the upper half-cylinder and decreases on the lower

o - \\/ 0.06 t/T, ~ 2 ()
P 0 w O e ICE00
FIG. 13. The phase lags &,/g/, €377 and &4/, On the
equivalent water cylinder, when a large pressure wave
- —N\ 0.09 T occurs at point (a,0) in an undisturbed wave field. Pre-
P S y 3 (6=1/2) dictions are obtained for ka=0.26, and h/a=3.2; the
q / - (; \\' /// — — — 7 (6=n3/2) mean JONSWAP spectrum has been assumed. Let us
Qe — 84 - 0|8 . .
~ - note that g;; gives the time that the wave pressure takes
to pass from point i to point j (points i and j have equal
— SN T submergence and are on the equivalent water cylinder).
gt ~o - 0.06 e - 4 (6=n13/4)
=" o \\Q'& /// ol [m——6®=msi)
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half-cylinder. Furthermore the propagation speed of the wave
pressure suffers a drop in passing on the cylinder. These
analytical predictions well agree with experimental evidence
by Boccotti,!' who compared the cylinder force and the
Froude-Krylov force and concluded that the vertical wave
force on the solid cylinder is greater than the vertical wave
force on the ideal water cylinder because the amplitude of
the pressure fluctuations grows at the upper half-cylinder and
decreases at the lower half-cylinder. As for the horizontal
wave force on the submerged cylinder, he concluded that it is
greater than horizontal force on the equivalent water cylinder
as a consequence of the drop of the propagation speed.

Analytical predictions have shown also that wave force
components, when either a high wave or a large force occurs,
are quasi-impulsive in the time domain and have equal stan-
dard deviation, in good agreement with data of a small scale
field experiment. Experimental forces are smaller than ana-
lytical predictions. For values of K close to 2, the standard
deviation of measured force is as much as one half the ana-
lytical predictions, in agreement with experimental evidence
by Chaplin.7 This result is due to the interaction (Magnus
force) of the steady streaming (viscous flow) at the cylinder
with the incident orbital wavy flow, which produces a force
out of phase of 7, with respect to the inertial force.
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