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ABSTRACT. In this work we propose new proofs of some classical results of nonlinear
programming milestones, in particular for the Kuhn-Tucker conditions and Lagrangian
methods and functions. This study is concerned with some interesting features found in the
well-known tools and methods, connecting them with a technical analysis of the “Maximal
Margin Classifier” designed specifically for linearly separable data, while referring to the
condition in which data can be separated linearly by using a hyperplane. In this context
of analysis, we technically point out the centrality played by these mathematical tools
when obtaining robustness in Machine Learning procedures analyzing some support vector
machine (SVM) models, as they are used in various contexts and applications (e.g., Soft
Margin SVM and Maximum Margin SVM). This paper represents the first study reinforcing
the ongoing Machine Learning Modeling and the research project we will launch in the
near future on this fascinating frame of analysis. In this work we examine the problem of
estimating the bias into a decision-making process. A new decision function algorithm is
introduced as well.

1. Introduction

Optimization modeling is nowadays well-established as a fundamental framework driv-
ing the examination of numerous challenging allocations or decision-making problems
following the Artificial Intelligence frontier of knowledge. It offers a certain amount of
philosophical elegance that is difficult to argue against, and it frequently provides a necessary
amount of operational simplicity. It is a complicated choice problem including the selection
of values for a number of linked variables using this optimization methodology, focusing
on one or more objective(s) intended to quantify performance and gauge the quality of the
decision. Consequently, a specific optimization formulation should only be thought of as an
approximation analysis, as is the case with all quantitative analysis methodologies. It takes
modeling expertise to capture the key components of an issue and common sense to analyze
the outcomes to arrive at useful conclusions. Therefore, optimization should be viewed as
a conceptualization and analysis tool rather than as a theory that offers a logically sound
solution. Through practical experience in the field and a solid comprehension of pertinent
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A1-2 T. CIANO AND M. FERRARA

theory, one can develop abilities and common sense in framing problems and interpreting
outcomes. Every issue formulation process includes a trade-off between the competing
objectives of creating a mathematical model that is also tractable and sufficiently complex
to contain the description of the situation. Set optimization is the use of set-valued maps for
optimization. Many set optimization publications make use of the idea of a minimizer and
its variations, which can easily be researched via vector optimization.

Today, however, we use an ordering relation for set comparison that is more oriented
toward applications; this ordering relation was initially presented to optimization by Kuroiwa
(1998); a first publication was presented by Kuroiwa, Tanaka, and Ha (1997). Young (1931)
utilized this idea in algebra, Nishnianidze (1984) used it in fixed point theory, and Chiriaev
and Walster (1998) used it in interval analysis and computer science. A discussion of even
more plausible order relations can be found in the paper by Jahn and Ha (2011). These
order interactions have significant socioeconomic applications, as demonstrated by Neukel
(2013). For both scalar and multiobjective optimization, Karush-Kuhn-Tucker (KKT)
optimality requirements are crucial in the field of optimization theory. If an appropriate
constraint qualification holds, the KKT criteria are met at a weak efficient point. Jahn (2017)
studied set optimization problems in finite-dimensional spaces with the property that the
images of the set-valued objective map are described by inequalities and equalities and
that the sets are compared with the lower-order relation of the sets. For these problems,
the new Karush–Kuhn–Tucker conditions are shown as necessary and sufficient optimality
conditions. Furthermore, the conditions of optimality without multiplier of the target map
are presented. The utility of these results is demonstrated with a standard example.

The so-called “approximate optimality conditions”, also known as “asymptotic optimality
conditions” or “sequential optimality conditions”, in which suitable sequences of points and
multipliers are taken into account, are another type of necessary optimality conditions in
scalar problems that do not require a constraint qualification. These conditions have been
studied for many years. For pseudoconcave programming, we can cite the works of Fiacco
and McCormick (1967), Kortanek and Evans (1968), and Zlobec (1971), and the book by
Hestenes (1975). This last author generalizes the traditional optimality requirements stated
by Guignard in an asymptotic manner. The Karush-Kuhn-Tucker conditions are also taken
into consideration by Craven (1984) and Trudzik (1982).

For example, the papers of Andreani, Martínez, and Svaiter (2010), Andreani, Haeser,
and Martínez (2011), Haeser and Schuverdt (2011), Dutta et al. (2013), and Haeser and
de Melo (2013) are a few recent works that have focused on the study of such conditions
due to their interest in the design and analysis of algorithms used to check this type of
approximate optimality conditions. Ye and Zhang (2013) studied optimality conditions for
non-fluid optimization problems with equality, inequality, and constraints of abstract sets.
They derived the enhanced Fritz John condition, the Karush-Kuhn-Tucker condition, and
the pseudonormal and quasinormal conditions. They also provided a tighter upper estimate
for the Fréchet subdifferential and the limiting subdifferential of the value function.

Giorgi, Jiménez, and Novo (2016) dealt with the study of the approximate KKT condition
for a continuously differentiable multi-objective problem in finite-dimensional spaces,
whose feasible set is defined by inequality and equality constraints. They extended to
this context the necessary optimality conditions obtained for scalar problems through
KKT approximate conditions. Furthermore, we also proved that these conditions are
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sufficient conditions under the assumption of convexity as well. Ghosh et al. (2019)
presented an extended Karush-Kuhn-Tucker condition to characterize efficient solutions to
constrained interval optimization problems. It is derived from Gordan’s theorem and applied
to binary classification with range-valued data using Support Vector Machines (SVM). In
fact, SVM classifiers prioritize increasing the class separation over exploiting class-specific
internal models in the training set. However, it has recently been discovered that structure
information, as an implicit prior knowledge, is essential for the development of an effective
classifier in various real-world applications.

Therefore, over the last decades the Artificial Intelligence techniques, models and tools
were developed. In this context of analysis the Machine Learning modeling has been pushed
towards other strictly correlated fields of experimental applications in different scientific
fields. From a mathematical point of view it should be interesting to analyze some technical
aspects related to the reinforcement of Support Vector Machine modeling, and in particular,
in relation to increasing the robustness, efficiency and accuracy of classical models normally
applied in studying forecasting and predictive phenomena. In this vein, we intend to study
the Karush-Kuhn-Tucker conditions and the connected Lagrangian approach, developing a
new point of view opening arising research scenarios.

Xue, Chen, and Yang (2011) proposed a new wide-margin classifier, the structural
regularized support vector machine (SRSVM). It sits at the intersection of cluster granularity
and quadratic programming and follows the same optimization formulation as LapSVM
(Laplacian Support Vector Machine), simultaneously integrating compactness within classes
with separability between classes. Experimental results have demonstrated that SRSVM is
often superior in classification and generalization performance compared to state-of-the-art
algorithms.

The research of maximal margin classifiers has received a considerable amount of atten-
tion lately. Their extraordinary generalization skills are partly to blame for this attraction.
In a nutshell, the maximal margin hyperplane accurately classifies all of the data given
a collection of linearly separable data and maximizes the least distance between the data
and the hyperplane. Computing the maximal margin hyperplane relates to the now-classic
Support Vector Machines training problem if the Euclidean norm is used to quantify the
distance. The formulation of this assignment as a quadratic programming problem is natural.
If an arbitrary norm p is employed, this task transforms into a more general mathematical
programming issue that must be handled using general-purpose (and computationally de-
manding) optimization techniques (see, for example, Nachbar, Nossek, and Strobl 1993;
Mangasarian 1997). When the target to be learned is sparse, a more general task called
feature selection difficulties occurs.

Gentile (2000) discussed the study of maximum margin classifiers, and in particular
hyperplanes of maximum margin, which classify linearly separable data and maximize
the minimum distance. This problem is related to SVM training and can be solved using
generic optimization methods. A decision method that separates the training data with the
maximal margin is discovered by maximum margin classifiers. This approach minimizes the
structural risk and improves the classifier’s generalization skills, which is supported by the
theoretical studies of both Vapnik and Chervonenkis (1974) and Cortes and Vapnik (1995),
and experimental data. The Support Vector Machines illustrated by Cortes and Vapnik
(1995) convert the quadratic programming problem into the supervised learning of the
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maximal margin classifier. Although quadratic programming has been extensively studied,
there is still a need to process enormous amounts of data using complex optimization
strategies.

Xu et al. (2005) proposed a new method for clustering based on the search for maximum
margin hyperplanes through the data, which can be solved with a semi-defined program
and leads to semi-supervised training for the support vector machines. Hein, Bousquet, and
Schölkopf (2005) presented a framework for generating maximum margin algorithms for
metric spaces. The authors consider two general cases: trusting the metric globally and
believing only in the local structure of the metric. The algorithm optimization problem in
this Banach space cannot be solved exactly, but an approximation is given that is exact when
considering the training data plus a test point as a finite metric space. Isometric embeddings
in a Hilbert space are restricted to the subclass of Hilbert metrics and the results suggest
that the SVM has a better generalization performance. Nonlinear and non-smooth scalar
and multi-objective optimizations were used in the past by different authors to introduce
extended generalized support vector machine formulations (for instance, by means of the
LC1 functions). One can refer to the papers of La Torre and Vercellis (2002), Cusano and
La Torre (2003), La Torre (2003), and Orsenigo and Vercellis (2004), and references therein
and, for general aspects in this fascinating direction, to Mangasarian (1998). Further work
is needed in this direction.

The paper is structured as follows. In Section 2 a classic nonlinear programming problem
is described by deepening; in Sections 2.1 and 2.2, we discuss the theorems related to the
Kuhn-Tucker-Uzawa conditions. In Sections 3 and 3.1, we introduce the Support Vector
Machine and relate the Lagrangian approach to it. Finally, in Section 4 we present the
conclusions and future developments.

2. Nonlinear programming: a brief and useful sketch of classical milestones by new
proofs and new points

A stimulating diversity of pure, widely applicable mathematics, numerical analysis, and
computers can be explored using nonlinear programming. This strength is also clear for
what concerns Artificial Intelligence – in particular for what concerns Machine Learning
developments. Usually, a typical mathematical programming problem is formally introduced
in the following way:

max f (x)
s.t. g(x)≤ b, with x ≥ 0

where f : Rn → R and g : Rn → Rm. (1)

The “limitations” – the constraints and non-negativity of variables – that are visible in this
suggested generic scheme are only apparent for x. The nonlinear programming problem
(NLP) is the name of the mathematical programming issue that was introduced at the
beginning of this essay (see (1)). One can fit the majority of the static optimization point
issues using the same formal scheme. Strong inequalities and situations where one or more
variables can take values from a set that does not comprise an interval (>) are two situations
in which it is not possible to move on with this formal conceptual unification. According to
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the generalizations that can be drawn about the functions that affect problem (1), there are
two extremely significant subtypes that have been deeply studied in time:

(1) A concave programming problem when the objective function f is concave, and
the admissible region is also concave (i.e., the components of the vector function
are all convex g: g1,g2, . . . ,gm).

(2) An NLP problem with differentiable functions when they are all differentiable,
namely f , g1,g2, . . . ,gm.

Important findings such as separation theorems that enable research into the overall behavior
of the objective function are made completely exploitable by the concavity hypothesis (or
convexity). The derivative, which, on the other hand, lends itself to a local study, serves
as the analysis and investigation instrument in the case of the differentiability hypothesis.
In fact, it is stated in principle that the requirements of the global maximum/minimum are
given in Hypothesis 1, and the local maximum/minimum are assumed in Hypothesis 2.

2.1. Concave/convex programming: some useful aspects strictly connected to Machine
learning applications. We present an essential proposition that is required in order to prove
a key NLP theorem.

Proposition 1. Let ϕ1,ϕ2, . . . ,ϕm : Rn → R be concave defined on the same convex set
X ⊆ Rn and consider a function ϕ̄ : Rn → Rm that has ϕ1,ϕ2, . . . ,ϕm} as its components.
If the system ϕ (x) > 0,∀x ∈ X , it is impossible, and there will exist in Rm a row vector
λ̂ ≥ 0 such that:

ˆ︁λϕ(x)≤ 0 ∀x ∈ X (2)

Proof. ∀x ∈ X we define the set

H (x) = {h : h ∈ Rm,h < ϕ (x)} . (3)

H is the union of all H(x) when changing (x) in X , that is:

H =
⋃︂
x∈X

H (x) (4)

To this end, we say that:
• H is convex. Consider h1 and h2 as two generic elements of H: for the (4) each

of them belongs to at least one among the sets (3) and therefore h1 ∈ H(x1) and
h2 ∈ H(x2). Starting from the hypothesis of concavity of the components we will
have ϕ:

αh1 +(1−α)h2 < αϕ
(︁
x1
)︁
+(1−α)ϕ

(︁
x2
)︁
≤ ϕ

(︁
αx1 +(1−α)x2

)︁
,

with 0 < α < 1. Therefore:

αh1 +(1−α)h2 ∈ H
(︁
αx1 +(1−α)x2

)︁
≤ H,giventhat αx1 +(1−α)x2 ∈ X .
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• H does not contain the origin. In fact, if that were the case, the origin would belong
to at least one, and we will have H (x) ϕ (x) > 0 for some x. As H convex and
0 /∈ H, we know that there is a vector p ̸= 0 :

pt ·h ≥ pt ·0 = 0 ∀h ∈ H.

Since the components of h take arbitrarily large negative values in the absolute
value, it must be p ≤ 0. Indicating the vector −pt with ˆ︁λ , we have:ˆ︁λ ·h ≤ 0 ∀h ∈ H.

At this point it is observed that we can write h = ϕ (x)− ε with x ∈ X and ε > 0.
Varying x in X and ε > 0 we could generate all of the h ∈ H. However, then:ˆ︁λ · (ϕ (x)− ε)≤ 0 ∀x ∈ X and ∀ε > 0

by placing a = ˆ︁λ · ε:ˆ︁λ ·ϕ (x)≤ a ∀x ∈ X and ∀a > 0

Having to hold this last inequality ∀a > 0 it will coincide with (2).
□

Remark 1. If there is a need, one can take in (2)

m

∑
r=1

ˆ︁λr = 1, and divide each ˆ︁λr f or
m

∑
r=1

ˆ︁λr > 0

The Kuhn-Tucker-Uzawa theorem, which offers a required condition of a global maximum
for concave programming problems, can be introduced thanks to the proposition 1 that has
just been stated and shown.

Theorem 2 (Kuhn-Tucker-Uzawa). If λ̂ (b−g(x̂)) = 0 is the global maximum point for
problem (1), there exist m+1 non-negative quantities λ̂ 0, λ̂ 1, λ̂ 2, . . . , λ̂ m, of which not all
are simultaneously zero:

λ̂ 0 f (x)+ λ̂ (b−g(x))≤ λ̂ 0 f (x) ∀x ∈ X (5)

where ˆ︁λ =
[︂
λ̂ 0, λ̂ 1, λ̂ 2, . . . , λ̂ m

]︂
. In particular, we have:

λ̂ (b−g(x̂)) = 0 (6)

Proof. Having g1, g2, . . . ., gm all convex functions defined by b1−g1 (x) , b2−g2 (x) , . . . ,
bm−gm (x) are all concave. Starting from this hypothesis we will have the following system:

f (x)− f (x̂)> 0

b−g(x)≥ 0

which has no solutions for x ≥ 0. Finally, the following system will have no solution for
x ≥ 0,

f (x)− f (x̂)> 0
b−g(x)> 0
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The set of x ≥ 0 is convex and therefore the assumptions of proposition 1 for m+1 functions
defined by f (x)− f (x̂) , b1−g1 (x) , b2−g2 (x) , . . . , bm−gm (x) are that there exist m+1
non-negative numbers λ̂ 0, λ̂ 1, λ̂ 2, . . . , λ̂ m that are not all null such that:

λ̂ 0 ( f (x)− f (x̂))+ λ̂ (b−g(x))≤ 0 ∀x ≥ 0

where from these it follows that λ̂ =
[︂
λ̂ 0, λ̂ 1, λ̂ 2, . . . , λ̂ m

]︂
. Let us show (6).

Let λ̂ (b− g(x̂)) ≥ 0, being λ̂ ≥ 0 and b− g(x̂) ≥ 0. Replacing x̂ in (5) one also has
λ̂ (b− g(x̂)) ≤ 0, and therefore it is equal to (6). We introduce the Slater condition (S),
namely, that there is at least one x̂ ≥ 0 such that g(x̂)< b. □

We will then have the following theorem:

Theorem 3. If the assumptions of Theorem 2 are satisfied (K.T.U.) and according to
Slater’s condition we have that λ̂ 0 > 0 and one can make sure that λ̂ 0 = 1, we have the
following proof.

Proof. We will have to prove that λ0 cannot be zero. If it were equal to zero equation 5
would be:

λ̂ (b−g(x̂))≤ 0 ∀x ≥ 0

which is obviously absurd, since λ̂ (b− g(x̂)) ≤ 0, λ̂ ≥ 0 and (b− g(x̂)) > 0. From this
we have that λ̂ 0 > 0. In compliance with Theorem 3, one can act on the structure of (5),
obtaining:

f (x)+ λ̂ (b−g(x))≤ f (x̂) ∀x ≥ 0. (7)

Called L the function defined by

L
(︂

x, λ̂
)︂
= f (x)+λ (b−g(x)) x ≥ 0 and λ ≥ 0. (8)

it can be said that
(︂

x̂, λ̂

)︂
is a saddle point, namely:

L
(︂

x, λ̂
)︂
≤ L

(︂
x̂, λ̂

)︂
≤ L (x̂, λ ) ∀x ≥ 0 ∀λ ≥ 0.

Noting that L
(︂

x̂, λ̂

)︂
= f (x̂), it turns out that the first inequality is (7), while the second

follows immediately from the fact that λ ≥ 0 and b−g(x̂)≥ 0.
The function L defined by ( f ) is called the Lagrangian. The variables λr, are the Lagrange

multipliers. The denoted function with ˜︁L is defined by:˜︁L(x,λ0, λ ) = λ0 f (x)+λ· (b−g(x))

which is defined as an “augmented” Lagrangian. The fundamental result to which we
have arrived so far is that it has been shown that a necessary condition for x̂ is a global
maximum point for problem (1) and that L has a saddle point

(︂
x̂, λ̂

)︂
. The link between

a Mathematical Programming Problem (MPP) with n variables and m constraints and the
behavior of a function with n+m variables is a fundamental property of MPP: it is not in
fact a characteristic exclusively proper only to concave programming but, on the contrary,
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it is found in all other types of programming. Slater’s condition is essential to ensure the
presence of a saddle point for L. Let us present, however, a counter example in which (S)
is violated: for this purpose we consider a problem of Linear Programming with only one
variable and one constraint

max
x

x

with constraint x2 ≤ 0

where the only point allowed by the constraint is 0 which represents the maximum point.
Hence, the function L is defined by:

L(x,λ ) = x−λx2

and it does not have any saddle. Let us introduce another result, which can be considered
the reverse of Theorem 2. □

Theorem 4. Let f ,g1,g2, . . . ,gm be real functions defined by values of x ≥ 0. If there
exists a point (ˆ︁x,ˆ︁λ ) with ˆ︁x ≥ 0 and a ˆ︁λ ≥ 0 saddle for the Lagrangian function L(x,λ )
= f (x)+λ (b−g(x)), then ˆ︁x is a maximum point for f (x) under the constraints g(x)≤ b
and x ≥ 0. In addition, we will have that:

λ̂ (b−g(x)) = 0 (9)

Remark 2. The statement of Theorem 2 did not request neither the concavity of f nor the
convexity of g (or vice versa). Thus , the cited Theorem has general validity going beyond
the limits of investigation of the following survey (the Concave Programming).

Proof. L(x̂, λ̂ )≤ L (x̂,λ ) for each λ ≥ 0 ensures that:

λ̂ (b−g(x))≤ λ (b−g(x)) (10)

Thus from (10) it can be deduced that λ (b−g(x)) is a lower bounder as λ ≥ 0. As λ ≥ 0 is
a convex cone we will have that:

λ (b−g(x̂))≥ 0 ∀λ ≥ 0

so that b−g(x̂)≥ 0 in such a way that x̂ satisfies the constraints. Placing λ = 0 in (10) we
will have:

λ̂ (b−g(x̂))≤ 0

However, if λ̂ ≥ 0 and b−g(x̂), we have:

λ̂ (b−g(x̂)) = 0

i.e., (9). (x, λ̂ )≤ L(x̂, λ̂ ) means that:

f (x)+ λ̂ (b−g(x))≤ f (x̂)+ λ̂ (b−g(x̂)) ∀ x ≥ 0

and, taking into account (9):

f (x̂)− f (x)≥ λ̂ (b−g(x)) ∀x ≥ 0

It follows that ∀x : b−g(x)≥ 0 and we have:

f (x̂)− f (x)≥ 0

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 102, No. 1, A1 (2024) [19 pages]



KARUSH-KUHN-TUCKER CONDITIONS AND LAGRANGIAN APPROACH . . . A1-9

i.e., that x̂ ≥ 0 is a maximum point under the condition b−g(x)≥ 0. □

2.2. Programming with differentiable functions. In this case we modify the starting
problem (1), replacing the limitation x ≥ 0 with the following:

x ∈ A ⊆ Rn

where A is an open.
Hence, the new problem will be as follows:

max
x

f (x) with constraints g(x)≤ b x ∈ A, (11)

with A being an open Rn, f :Rn →R, g :Rn →Rm and f ,g1,g2, . . . ,gm are all differentiable.
We introduce a Constraints Regularity Condition (CRC). We indicate with V ⊆ A the field
of choice of the problem of NLP (11) such that:

V = x : x ∈ A, . . .g(x)≤ b

and let x0 be a point of V . Let I(x0) be the set that collects the indices r such that gr(x0) = br
and x denote by any point of A:

x̄ g′r(x
0) · (x̄ − x0)≤ 0 ∀r ∈ I(x0)

We say that x0 verifies the Constraints Regularity Conditions (CRC) if, however ax̄ is taken,
there exists a function Φ that maps for each value t, 0 ≤ t ≤ 1, a point of V with the
following two properties:

(1) IΦ(0) = x0

(2) Φ(t) is differentiable in 0 and Φ′(0) = α (x̄−x0) with α > 0

To fully understand the meaning of CRC, let us consider the following set:

Z(x0) = {x̄ : x̄ ∈ A, g′r(x
0) · (x̄− x0)≤ 0 for r ∈ I(x0)}

This is the set of points obtained by substituting, for constraints satisfied with the sign of
equality, with gr(x) = br the hyperplanes tangent to them in x0 with g′r(x

0) · (x̄− x0) = 0
(not considering the constraints satisfied with the sign of strong inequality). It is said that
the CRC requires that for each outgoing network segment from x0 and all contained in
Z(x0), there exists a curve all contained in V and tangent to the segment of lines in x0. As
can be seen in Figs. 1 and 2 (case A: I(x0) = {1}; V = double hatched set Z(x0)= simple
hatch set; case B: I(x0) = {1,2}; V = double hatched set Z(x0)= line through x0), the CRC
can be violated when in the neighborhood of x0, and the border of the field of choice has
irregularities (e.g., a cusp). In case B just presented, Z(x0) is reduced to a straight line and
then x̄ must be taken on it. This line Z(x0), in the proposed case, enters V on the left side,
and on the right hand side, it does not. It follows to construct a curve tangent to the segment
that starts from x0 and x̄ and that is contained in V . On the basis of the considerations just
expressed, it can be said that the CRC is quite analogous to Slater’s condition, but it holds
locally while S acts globally (S).

We introduce the Kuhn-Tucker Theorem which gives us the necessary condition for a
local maximum:
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A1-10 T. CIANO AND M. FERRARA

FIGURE 1. Case A: CRC is satisfied

FIGURE 2. Case B: CRC is violated

Theorem 5 (K-T). Let there be a local maximum point for problem (11) and let the CRC
hold in x̂. Then there will be a row vector λ̂ ∈ Rm such that:⎧⎪⎪⎪⎨⎪⎪⎪⎩

A. ∇
t f (x̂)− λ̂ ·∇tg(x̂) = 0

B. g(x̂)≤ b
C. λ̂ (b−g(x̂)) = 0
D. λ̂ ≥ 0

Proof. gr(x̂) ≤ br r = 1,2, ...,m,, if the I (x̂) = /0 assumption follows from the following
theorem. □
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Theorem 6. f : Rn → R is defined on X ⊆ Rn. If x̂ is a local maximum point and f is
differentiable in x, then:

f ′(x̂) · v ≤ 0 (12)

where v represents a non zero vector v ∈ Rn and is eligible (i.e., x ∈ X ⊆ Rn, and v is
admissible, with respect to x ∈ X, if x+ εv ∈ X at least for all values of ε > 0 and less than
a certain ε0 > 0). In particular, if x̂ is a neighborhood of X then:

f ′(x̂) = 0 (13)

Proof. Through the Taylor formula stopped at the first order, we have

f (x̂+ εv) = f (x̂)+ ε f ′(x̂) · v+o(ε)

with admissible v and ε > 0, and x̂+ εv ∈ X being the maximum local, we have

f (x̂+ εv)≤ f (x̂)
which follows from (12).

If x̂ and a neighborhood of X ∀v admissible, and (12) is worth ∀v, it reduces to (13).
Returning to the KT Theorem, we will have, by virtue of what was seen above f ′(x̂) = 0,
and the condition are trivially verified by placing ˆ︁λ ,= 0.

Suppose:
gr(x̂) = br with r ∈ I(x̂)
gr(x̂)< br with r /∈ I(x̂)

and I(x̂) ̸= /0.
Arbitrarily choose an x̄ ∈ A : g′r(x̂)(x̄− x̂) ≤ 0 for r ∈ I(x̂). Since it is a differentiable

choice, we can write f :

f (x)− f (x̂) = f ′(x̂)(x− x̂)+o (||x− x̂||)

Considering the function Φ of CRC taking Φ(t) = x, we have

x− x̂ = Φ(t)−Φ(0) = φ
′(0)t +o(t)

where o(t) is nothing more than (||x− x̂||); therefore:

f (x)− f (x̂) = f ′(x̂)[φ ′(0)t +o(t)]+o(t) = f ′(x̂) ·φ ′(0)t +o(t)

and finally leveraging the CRC:

f (x)− f (x̂) = α f ′(x̂)(x− x̂)t +o(t) with α > 0

Since Φ(t) ∈ v,∀ 0 ≤ t ≤ 1 and x̂ is a local maximum, we have that f (x)− f (x̂)≤ 0 at least
for sufficiently small values of t. It is therefore obtained that f ′(x̂)(x− x̂)≤ 0. Let us say that
y = x− x̂, and it can be concluded that we have f ′(x̂) ·y ≥ 0,∀y : −g′r(x̂) ·y ≥ 0 and r ∈ I(x̂).
By virtue of the Farkas-Minkowski Theorem then there exist numbers λr ≥ 0 ∀r ∈ I(x̂):

− f ′(x̂) = ∑
r∈I(x̂)

ˆ︁λr(−g′r(x̂))

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 102, No. 1, A1 (2024) [19 pages]



A1-12 T. CIANO AND M. FERRARA

or
f ′(x̂)− ∑

r∈I(x̂)

ˆ︁λr g′r(x̂) = 0

Let us say now that ˆ︁λr = 0 for r /∈ I(x̂) and we will obtain

f ′(x̂)−
m

∑
r=1

ˆ︁λr g′r(x̂) = f ′(x̂)− λ̂g′(x̂) = 0

which results in condition A of the KT Theorem (see Theorem 2). Condition B is obvious:
if x̂ is a local maximum for problem (11), it respects the constraints. As regards condition C,
since ˆ︁λr = 0 with r /∈ I(x̂) and br −gr(x̂) = 0 for r ∈ I(x̂) we have that λ̂ (b−g(x̂)) = 0. □

3. Support Vector Machine: some remarks and new developments

A Support Vector Machine is a tool that data scientists can use to tackle classification and
regression issues. A non-probabilistic binary classifier is an SVM. The non-probabilistic
component contrasts with probabilistic classifiers, such as naive Bayes, which determine
the likelihood of belonging to the class based on training instances (Aggarwal 2015). A
decision boundary, which is a plane in the space of multidimensional qualities, is used by
an SVM to divide data. Support vectors was the name given by the creators since only
a small portion of the data contacts or supports the decision boundary. Data can only be
divided into two classes by an SVM. Research on multiclass data management using SVM’s
is still ongoing. There are some workarounds, though. According to Bhavsar and Ganatra
(2012), the strategies entail building numerous SVMs that compare feature vectors against
one another using different techniques such us one-versus-rest (OVR) or one-versus-one
(OVO). The OVR technique trains k classifiers for k classes so that each class is biased
towards the other k − 1 classes. OVO needs k(k − 1)/2 classifiers, since it generates a
binary classification issue for every conceivable class coupling. After building the necessary
number of binary classifiers for the OVR or OVO techniques, the algorithm sorts new
objects into categories based on which classifiers received the most votes. Each point in
the supervised machine learning technique known as SVM is made up of a collection of
attributes {x1, . . . .,xn} and a class label (yi). Each data object is treated by an SVM as a
feature space point that belongs to one of only two classes. According to the SVM, the
class labels are either yi = 1 or yi = −1 The dataset archive is therefore mathematically
represented by the sets X̄ :

X̄ = {(xi,yi) |xi ∈Rp,yi ∈ (−1,+1)}n
i=1 (14)

where n is the number of vectors and p is the characteristic’s vector dimension.
The SVM classifier discovers a linear decision boundary in the feature space during

training that most effectively divides the input objects into the two classes. The correspond-
ing optimization problem identifies two parallel hyperplanes that, in the absence of any
data items, produce the biggest gap. A subspace with a dimension smaller than the sur-
rounding space is called a hyperplane. The margin is the angular separation of two parallel
hyperplanes. A multidimensional decision boundary that divides the data into two halves is
defined by the hyperplane that equidistantly forks the space between parallel hyperplanes.
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FIGURE 3. Maximizing the margin of a hyperplane

Because a nonlinear hyperplane will typically prefer to fit too closely (overfit) to a boundary
that would perfectly segregate the training data but not necessarily the new data, an SVM
utilizes a linear hyperplane instead. In other words, by incorrectly predicting the class of
fresh data, overfitting the model on training data might result in poor generalization of the
classifier (see Bhavsar and Ganatra 2012). Figure 3 ’s graphic demonstrates that there are
no data points in the area enclosed by the two hyperplanes H1 and H2. The items provided
at the borders of the two hyperplanes are referred to as “support vectors”. The four support
vectors (points) in this example are highlighted in black edges in Fig. 3. A linear hyperplane
H0 that is equidistant between the two hyperplanes H1 and H2 is the decision boundary. The
separation between the two hyperplanes, H1 and H2, is the hyperplane’s margin. In other
words, the decision boundary’s hyperplane H0 is equivalently offset from the hyperplanes
H1 and H2. In this framework, in our opinion it is really interesting to point out some
mathematical aspects related to an optimization model by a Lagrangian approach normally
used in SVM issues. In the sequel we will analyze each model that in our idea can present
a collection of remarks related to these mathematical aspects. We consider a Lagrangian
approach by introducing a generalized Lagrange functional and duality considering the
following:

min
w

f (w)

s.t. gi(w)≤ 0, i = 1, . . . ,n
h j(w) = 0, j = 1, . . . ,n
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This is really a primal problem and technically we could consider a generalized Lagrangian
as

L(w,λ , λ̄ ) = f (w)+
k

∑
i=1

λigi(w)+
e

∑
j=1

λ̄ ih j(w)

Another very useful tool in this direction can be the min-max Lagrangian:

max
λ ,λ̄ :λ1≥0

L(w,λ , λ̄ ) = max
λ ,λ :λ1≥0

(︄
f (w)+

k

∑
i=1

λigi(w)+
e

∑
j=1

λ̄h j(w)

)︄
=

=

{︄
f (x) i f gi(w)≤ 0, h j(w) = 0
∞ otherwise

and hence

min
w

max
λ ,λ̄ :λi≥0

L
(︁
w,λ , λ̄

)︁
= min

w
max

λ ,λ̄ :λi≥0
L
(︁
w,λ , λ̄

)︁
= min

w
f (w)

s.t. gi (w)≤ 0, i = 1, . . . ,n
h j (w) = 0, j = 1, . . . ,n

From this mathematical framework, we can obtain

(1) the primal problem (min-max of a Lagrangian function), i.e:

min
w

max
λ ,λ̄ :λi≥0

L
(︁
w,λ , λ̄

)︁
(2) its dual form

max
λ ,λ̄ :λi≥0

min
w

L
(︁
w,λ , λ̄

)︁
We can perform a comparison between 1 and 2 asking when does the following equality
hold:

max
λ ,λ̄ :λi≥0

min
w

L
(︁
w,λ , λ̄

)︁
≤ min

w
max

λ ,λ̄ :λi≥0
L
(︁
w,λ , λ̄

)︁
This equality holds when:

- f and g′is are convex and h′is are affine;
- gi is strictly feasible: this means that there exists some w so that gi (w)< 0; under these
conditions we obtain the equivalency among the primal and dual problems.

min
w

f (w)

s.t. gi (w)≤ 0 = min
w

max
λ ,λ̄ :λi≥0}

L
(︁
w,α, λ̄

)︁
= max

λ ,λ̄ :λi≥0
min

w
L
(︁
w,λ , λ̄

)︁
hi (w) = 0

Primal problem Dual problem

Practically the solution of the primal and dual problems satisfies the KKT conditions:
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∂

∂ wi
L
(︂

w∗, λ
∗, λ̄

∗)︂
= 0 i = 1, . . . ,n (15)

∂

∂βi
L
(︂

w∗, λ , λ̄
∗)︂

= 0 i = 1, . . . , l (16)

α
∗
i fi (w∗) = 0 i = 1, . . . ,k (17)

fi(w∗)≤ 0 i = 1, . . . ,k (18)

α
∗ ≥ 0 i = 1, . . . .k (19)

From (15) to (19) are some necessary and sufficient conditions and in particular (15) is the
stationary environment, (16) is the primal feasibility, (17) represents the complementary
conditions,(18) is the primal feasibility, and (19) is the dual feasibility.

3.1. Lagrangian approach for SVM: the estimation of bias. Starting from the mathe-
matical structure just introduced, we can consider the following optimization problem for
solving an SVM issue:

min
w,b

1
2
||w||2

s.t. yi
(︂

wT x(i)+b
)︂
≥ 1 i = 1, . . . ,m

gi (w) =−y(i)
(︂

wT x(i)+b
)︂
+1 ≤ 0 i = 1, . . . m

we can build a Lagrangian as

L(w,b,λ ) =
1
2
||w||2 −

m

∑
i=1

λi

(︂
y(i)
(︂

wT x(i)+b
)︂
−1
)︂

C(z) :=
∫︂ z

0
γ(s)(1+m(z− s))ds+

∫︂ T

z
γ(s)e−δ (s−z)ds+Re−δ (T−z).

Now, we can minimize the function taking the first partial derivative:

∂ L (w,b,λ )
∂ w

= w−
m

∑
i=1

λiy(i)x(i) = 0 ⇒ w =
m

∑
i=1

λ y(i)x(i)

∂ L (w,b,λ )
∂ b

=
m

∑
i=1

λiy(i) = 0

and we obtain

L(w,b,λ ) =
m

∑
i=1

λi −
1
2

m

∑
i, j=1

y(i)y( j)
λiλ j(x(i))T x( j)−b

m

∑
i=1

λi y(i) =

=
m

∑
i=1

λi −
1
2

m

∑
i, j=1

y(i)y( j)
λiλ j(x(i))T x( j)
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We can apply this Lagrangian approach to develop some support vector machines procedures.
In this direction we can consider a decision function as

f (x) = (w∗)T x+b

which mathematically represents the equation related to H1, H2 in Fig. 4. More precisely,

FIGURE 4. Bias solutions

we have

f (x) = (
N

∑
i=1

λ
∗
i y(i)x(i))T x+b∗ =

N

∑
i=1

λ
∗
i y(i)(x(i))T x+b∗

The KKT conditions ask for ⎧⎪⎨⎪⎩
α∗

i fi (w∗) = 0
gi (w∗)≤ 0
λ ∗

i ≥ 0

where gi (w) = −y(i)
(︂

wT x(i)+b
)︂
+1.

Strictly correlated to the problem just presented, it can be useful for analyzing, from
a mathematical point of view, the arising of some bias in the model. A parameter in the
decision function of a support vector machine (SVM), known as the bias value, denotes
the offset from the hyperplane that divides the various classes. The concept of “intercept”
is another name for it. To ensure that the decision border does not always pass through
the origin, the bias term is introduced into the decision function. The decision boundary’s
position and slope can both be impacted by the bias, which can have a positive or negative
value.
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Numerical example. We can determine the value of the bias, where x1 can be a positive
support vector and x2 can be a negative one (see Fig. 4).{︄

(w∗)T x1 +b = 1
(w∗)T x2 +b =−1

b∗ = − (w∗)T x1 +(w∗)T x2

2
=−

max i:y(i)=−1 (w
∗)T xi +mini:y(i)=1(w∗)T xi

2

4. Conclusions and future developments

In this paper, new proofs of the classical results of nonlinear programming milestones,
such as the Karush-Kuhn-Tucker conditions and Lagrangian methods and functions, have
been proposed, opening new research scenarios by utilizing a mixture between mathematical
tools and artificial intelligence environment. Artificial intelligence techniques, models, and
tools have been developed to increase knowledge in related sciences in enormous fields of
applications. In the second part of this work, the main scope was focused on the technical
analysis of “bias”, emerging in Support Vector Machine procedures. A special decision
function was introduced involving the bias, as its weight could influence the decision making.
Therefore, in this paper the Karush-Kuhn-Tucker conditions and the Lagrangian approach
have been studied to increase the robustness, efficiency, and accuracy of the classical models.
This paper aims to start a sequence of studies on this theme involving the mixture among
these fields of knowledge.
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