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The choice of overall structural form for any structure is the most important task of the 
structural designer. However, before the behaviour of whole structural forms can be 
understood, the behaviour of very simple structures must be clear. To do this it is helpful to 
think of structures being assemblies of elements. 
In this lesson the behaviour of structural elements which are part of a load path is examined in 
detail. The understanding that is obtained from this examination makes it clear how parts of 
structures resist the internal forces. It also gives guidance on the best shape for any particular 
part of the load path. Structural elements are considered to be one-dimensional, two-
dimensional or three-dimensional.

If the three dimensions are approximately equal, then such 
an element is a three-dimensional element. 
Examples of three-dimensional elements are rare in modern 
building structures but often occur in older buildings, such 
as wall buttresses or thick stone domes.

The basic element can be thought of as a rectangular 
block, with sides of dimensions A, B and C.
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If one of the dimensions, say dimension B, is small compared with dimensions A and C, then 
the element is a two-dimensional element. Many parts of modern building structures are two-
dimensional elements such as floor slabs, walls or shell roofs.

If two of the dimensions of the basic element, say B and C, are small compared with dimension 
A, then the element is a one-dimensional element. One-dimensional elements are used 
abundantly in nearly all buildings; examples are beams, bars, cables and columns.
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Using the concept of elements, structures can be conceived as assemblies of elements. 
Examples can be found both in traditional and modern structures.

Nowadays structures are usually conceived and designed as assemblies of structural elements. 
This means the structural behaviour can be identified by considering the behaviour of each 
structural element in each load path.
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For any structure, all the elements that make up each load path must be strong enough to resist 
the internal structural actions caused by the loads. This means detailed information is required 
about the structural behaviour of structural elements. 
To obtain this knowledge a new concept has to be introduced, which is the concept of stress 
and the related idea of stress distribution. Stress is force per unit area. Stress distribution 
describes how the sizes of stresses vary from unit area to unit area. 
To understand these concept, it is helpful to look at the slice of a column subjected to an axial 
force. Suppose the cross-section of the slice is gridded into squares of the same size (unit 
squares), then a small force can be attached to each square. If the slice is divided into 25 unit
squares, so the axial force is divided into 25 forces per unit area,  f1 to f25. 
For equilibrium, the numerical sum of the sizes of the twenty-five forces per unit area must 
equal the total force on the cross-section. So far there is no requirement that any of the forces 
per unit area, f1 to f25, are numerically equal. The last figure a possible pattern of variation for 
f1 to f25. The length of each force arrow indicates the size of the force in each unit square and it 
can be seen that these forces (stresses) vary in a pattern.
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Suppose, for clarity, just one strip of squares is drawn, and the tops of the arrows are joined 
with a line. As can be seen the resulting shape is a triangle, so along this strip there is a 
triangular stress distribution. The subsequent figure displays the stresses varying in both 
directions across the cross-section so the tops of all the arrows can be joined with lines as 
shown. These lines show triangular shapes in one direction and rectangular ones in the other 
direction. It usual to simplify these diagrams of stress distribution by just drawing the outline 
along the edges.

In general there is no restriction on how stresses vary across any cross-section of any 
structure, except that the sum of the stresses must be equal to the internal force acting at the 
section and that the internal force acts at the center of gravity of the stresses.
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The concept of stress requires checks along each load path to ensure that structural elements are 
strong enough to resist the internal forces caused by the loads. This is checked by making sure that 
the stresses in the structural elements that are in the load path are less than the maximum allowable 
stress allowed for the structural material being used. The structure must not be over-stressed. 
The main point about the size of stresses is that they can be varied without altering the force. If some 
part of a load path is over-stressed, it may be convenient to alter the structure locally, by altering the 
geometry, so that the stress is reduced below the maximum stress that is allowed.
This idea is used widely in everyday life: stresses are increased or reduced purposely. For example, 
the weight of a person may be constant, but the stress under the person’s feet will vary with the area 
of the shoe in contact with the ground. This variation may have good or bad effects. Next figure 
shows three types of shoes, normal shoes, high heeled shoes and snowshoes.

Normal shoes cause normal stresses and can be used on surfaces that can resist these stresses. High 
heeled shoes, as they provide a much smaller area to carry the same weight, cause higher stresses 
under the shoe, particularly under the heel. Where stresses must be kept low, for walking on
snow for instance, the area under the foot must be increased. This is why snowshoes prevent people 
from sinking into snow.
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The idea of deliberately altering stress sizes by geometric methods is also widely used in many other 
objects used by humans. For example drawing pins are provided with large heads, to allow 
comfortable stresses on the thumb, and pointed shafts to cause high stresses under the point. The 
point stress is so high that the base surface fails and allows the drawing pin to be driven in.

The important idea is that for equilibrium, the force on the head must equal the force on the 
point, but the stresses vary. The stresses are varied by changing the geometry (of the drawing 
pin). The provision of handles, points, sharp edges and wide shoulder straps are all familiar 
devices for deliberately raising or lowering stresses.

The task of the structural designer task is to provide a structure that will carry the prescribed 
loads down the load path with comfortable stresses everywhere. Depending on the material 
used, the size of the comfortable stress will vary. For instance, as steel is stronger than timber, 
the allowable (comfortable) stress for steel is higher than for timber. So, in a general, timber 
structures will have larger structural elements than steel structures if they are to carry the same 
load.



Stress distribution in structural elements

Simplifying assumptions about the nature of material:
• The material is isotropic: the mechanical behaviour of the material is the same in all 

directions.
• The material is linear elastic: after deforming under load, the material returns to the same 

state when the load is removed. 

Simplifying assumptions about the geometry of the structure:
• The deflections of the loaded structure are small: using the shape of the unloaded structure 

for calculations to determine structural behaviour will not lead to any significant errors. 
• Plane sections remain plane: certain parts of a structure that are flat before loading are still 

flat after loading. 
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Axial stresses
An axially loaded structural element has axial internal forces and these cause axial stresses 
across the element. The assumption that plane cross-sections remain plane leads to a very 
simple stress distribution. 
Because flat faces of the unloaded slice are flat after the slice is loaded, all parts of the column 
cross-section deflect by the same amount. Because the deflections are equal over the cross-
section, the stress (load/unit area) is the same everywhere, in other words there is a uniform 
stress distribution.

The uniform stress over the cross-section of an axially loaded column gives a very simple 
relationship between force and stress and this is:

𝜎 =
𝑃
𝐴

This means that for a given force, the size of the stress can be varied by increasing or 
decreasing the cross-sectional area of the column.



The plane cross-section assumption implies that the whole cross-section is equally stressed. 
However for wide columns it does not seem reasonable to assume that the whole cross-section 
is equally stressed or even that the whole cross-section is stressed. Very approximately the 
stress spreads out at about 60º. This means that for the widest column, plane sections do not 
remain plane. 

From a technical point of view, this gives guidance as to whether structural elements are one, 
two or three-dimensional. Where simple stress distributions are reasonable, then elements can 
be regarded as one-dimensional, but where the stress distributions are no longer simple, the 
elements are two or three-dimensional. The widest column has to be regarded as a two-
dimensional element. This effect can be seen by pulling on progressively wider and wider 
sheets of paper. The stressed part of the paper will become taut; the unstressed areas will 
remain floppy.
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Where parts of the load path are beams and slabs, the elements will have internal bending 
forces (moments). The top and bottom surfaces of these elements become curved; however, 
plane cross-sections remain plane. Again looking at unloaded and loaded slices, the plane 
sections can be identified.

When the slice is bent by an internal bending moment, AB is squashed, EF is 
stretched, and CD remains the same length. Because the cross-sections remain 
plane, the amount each part of the slice is squashed or stretched varies directly 
with the distance it is from CD.
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As the structural material is linear elastic, the force is directly 
proportional to the deflection, so the maximum compression is at AB 
and the amount of compression decreases constantly from AB to CD. 
Similarly the maximum tension is at EF and the tension decreases 
constantly from EF to CD. The maximum compression is at the
top of the slice and the maximum tension is at the bottom of the slice 
and at CD, the change point, there is neither compression nor tension. 
Using this information a stress distribution diagram can be drawn for the side view of the slice.



If it is also assumed that these stresses that are caused by an internal 
bending moment do not vary across the beam, a three-dimensional 
diagram of the stress distribution of the compressive and tensile 
stresses can be drawn. 
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This stress distribution, which is based on the assumptions of linear elasticity and plane 
sections remaining plane, is widely used in structural design. It can be viewed as being in two 
parts, a triangular distribution of compressive stress and a triangular distribution of tensile 
stress. The two parts of the stress distribution give a new concept which is the moment as a 
pair of forces. Now the bending moment acting on a slice of a beam can be thought of in three 
alternative ways: as a rotating force, as a double triangular distribution of compressive and 
tensile stresses, or as a pair of forces.



These three alternative views are logically connected by the various concepts that have been 
introduced:
The first step connects the idea of a bending moment in a beam with plane sections remaining 
plane and the sides of the slice of a beam rotating.
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The second step connects the deflection of the slice caused by the rotation of the sides to ideas 
of linear elasticity and stress distribution.

The third step uses the idea that if a force causes a stress distribution, then where there is
a stress distribution there must be a force. And this force must act at the center of gravity of the 
stress distribution.

The distance between the push force, which is the effect of the compressive stresses, and the 
pull force, which is the effect of the tensile stresses, is called the lever arm. 



Because any moment is a force times a distance, the push and the pull forces give back the 
bending moment.
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The push and pull forces and the lever arm show how by altering the local geometry of the 
beam, the size of the stresses can be altered for any bending moment. In fact, two statements 
can be made about the sizes of the forces from the requirements of equilibrium. 
Firstly the forces on each face must be in horizontal equilibrium: the size of the push force 
must equal the size of the pull force.

Secondly, from moment equilibrium, the size of the bending moment is equal the size of the 
push force times the lever arm, or the size of the pull force times the lever arm.
As a consequence, if the lever arm is made bigger, the push (or pull) force is smaller and vice
versa.



The relationship between the size of stresses and forces is dependent, for any force, on the area 
and the shape of the distribution. All the compressive stresses (force per unit area) on the upper 
part of the beam must add up to the push force, and all the tensile stresses on the lower part of 
the beam must add up to the pull force. 

By varying the depth and therefore the lever arm, the size of the push and pull forces can be 
altered, which means the sizes of the stresses can be altered. This is only true if the width of the 
beam is not altered. The size of the stresses can also be altered by varying the width because 
this alters the area. Or the size of the stresses can be altered by varying both the depth and the 
width.
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Beams bent by moments have varying stresses that are at a 
maximum at the top and bottom. As all structural materials have 
a maximum usable stress, rectangular solid beams are under-
stressed except for the top and bottom faces.
It is one ambition of structural design to try and stress all parts of 
a structure to the maximum usable stress of the structural 
material being used. In this way no structural material is wasted. 
This is a sensible ambition provided it does not lead to 
geometrically complex structures that are expensive to build.
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Not only can material be wasted within the depth of a beam, but it can also be wasted along its 
length. Suppose a beam of constant depth and rectangular cross-section is used to carry a load 
over a simple span. The size of the bending moment will vary along the length of the beam. 
For this simple structure, the maximum stress only occurs at one place where the bending 
moment is at its maximum. Almost the whole of the beam has bending stresses less than the 
maximum. This contrasts sharply with a column with end loads. Here the whole of the 
cross-section and the whole of the length of the column can be at maximum stress and 
so none of the structural material is wasted.



To try and make beams more stress effective, non-rectangular shapes have been developed. 
As the maximum stresses for bending are at the top and bottom of a beam, more efficient 
beam sections have more structural material here. These efficient sections are I, channel or 
box sections.
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The exact details of these shapes depend on the structural material used, as the methods of 
construction are different. Furthermore where bending efficiency is not of paramount 
importance or for a variety of other reasons, such as cost and speed of construction, other 
shapes such as tubes, rods and angles may be used. To understand why the previous shapes are 
bending efficient, it is helpful to compare an I shaped section with a + shaped section. Both 
have the same depth and the same cross-sectional area. As plane sections are assumed to 
remain plane, and both sections are assumed to have the same maximum usable stress, the side 
view of the stress distribution is the same for both the sections.



However, if the three-dimensional stress diagrams are drawn, dramatic differences appear. 
The I section has large areas of the cross-section with stresses near to the maximum, but the + 
section has large areas with stresses near to zero. This means that the push and pull forces are 
much bigger for the I section than for the + section. Also the positions of the centers of 
gravity of these stresses are different and this gives the I section a larger lever arm than the + 
section.
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The maximum bending moment a beam can carry is given by the push (or the pull) force with 
the maximum usable stress, times the lever arm. Both the lever arm and the push force (or pull 
force) are greater for the I section than for the + section. Because of this, if beams have the 
same depth, the same cross-sectional area and the same maximum usable stress, then those 
with I sections will be able to resist larger bending moments than those with + sections. 
Although I beams, as they are called, can be made from timber or reinforced concrete they are
readily made from steel. Due to the bending efficiency of I beams they are verywidely used in 
steel construction.



As with columns, the assumption that plane sections remain 
plane is not always valid. There are two situations where it 
may not apply. The first is when the span of the beam is not 
more than about five times the depth of the beam. As the plane 
sections are no longer plane, the bending stress distribution is
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If a beam is not deep but is made from an I or similar 
section, again plane sections may not remain plane. If the 
widths of the top and bottom parts of the section are 
increased, eventually they will become too wide and not all 
the section will be stressed by the bending moment. For a 
normal I beam the bending stresses are assumed to be 
constant across the top and bottom parts, but for wide beams 
only part of the beam may be stressed, and the stress is not

not linear. These beams, called deep beams, cannot be regarded as one-dimensional elements 
but are two-dimensional elements.

constant across the beam. The effect that causes this varying stress across wide beams is 
called shear lag and the part of the beam that is stressed is often called the effective width.



Axial forces and bending moments cause axial stresses, shear forces cause shear stresses. 
Because shear stresses resist vertical loads, it is to be expected that shear stresses act vertically. 
On the face of a beam slice, unlike the column, shear stresses (force per unit area) act in line 
with the face of the slice.
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The distribution of shear stress cannot be deduced from the 
straightforward assumptions that were used for axial and bending 
stress. At the top and the bottom the shear stress must be zero, 
otherwise there would be vertical shear stresses on the surface of 
the beam, which is impossible. Mathematical analysis shows that 
for a rectangular beam the shear stress distribution has a curved 
shape, accurately described as parabolic distribution. 
The maximum is at the middle of the beam, it is zero at the top and bottom and is constant 
across the width of the beam.



For typical beam cross-sections, it is usually assumed that the shear stress distribution is 
constant rather than curved and refers only to the vertical part of the section, Av, called shear 
area.
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According to this assumption, the average shear stress can be evaluated by the equation

𝜏 =
𝑉
𝐴'



When a one-dimensional element is twisted by torsional moments the internal forces in the 
element cause torsional stresses. To see what is happening, cut a slice from a circular bar 
twisted by torsional moments.
If the circular cross-section is divided into small areas by radial and circumferential lines, then 
each area has a force in the tangential direction to the circumference. At the center, these 
tangential forces are zero and it is assumed that they increase linearly towards the outside of the 
bar. 
If a circular tube, with a wall thickness that is small compared with its diameter, is twisted by 
torsional moments, then it could be considered reasonable that the tangential stresses are 
constant across the wall of thickness t.
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Where cross-sections of an element are made up of a number of rectangular elements which do 
not form any type of tube - I beams and channels for example - they are called open sections. 
For these sections, the torsional stresses are loops round the whole section and the cross-section 
warps.
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The torsional behaviour just described has two important features that are:
• the torsional stresses form ‘loops’ within the section
• in general a plane cross-section warps when the element is twisted



When a one-dimensional element is part of a load path, it will have internal forces and these 
may be axial forces, bending moments or shear forces. These internal forces can be thought of 
as distributions of axial stress, bending stress and shear stress. These stresses can be combined 
to give the total stress distribution.
This way of combining stresses is relatively straightforward as it just adds stresses that are in 
the same direction on the face of the slice. Both axial force and bending moment stresses act at 
right angles to the face of the beam, which is along the beam, so they are combined by adding 
the stress distributions together.
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In this figure because the size of the axial compressive stress is bigger than the maximum 
tensile bending stress, the whole of the cross-section is in compression. The effect of 
combining the stresses gives a combined maximum stress and a combined minimum stress. 
The sizes of these stresses are:
• Maximum stress = Axial compressive stress plus maximum compressive bending stress
• Minimum stress = Axial compressive stress minus maximum tensile bending stress
Because the shear stress is parallel to the face of the slice, it is not added to the axial and 
bending stresses, but is kept separate.



Depending on the relative sizes of the axial and bending stresses and whether the axial stress is 
tensile or compressive, the combined stress distribution is all tensile, tensile and compressive, 
or all compressive.
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The axial stress distribution can be thought of as an axial force acting at the centre of gravity 
of the axial stress distribution and the bending stress distribution can be thought of as a pair of 
push-pull forces acting at the centres of gravity of the tensile and compressive parts of the 
bending stress distribution.

Because the push equals the pull, the combined force can only be an axial force. But this force 
must act at the centre of gravity of the combined stress distribution.



The effect of the moment is to ‘move’ the axial force by a distance, e, from the center of gravity 
for uniform axial stress. This distance e is called eccentricity.
Before combining the forces there was an axial force P and a bending moment M. Now there is 
an axial force P that has ‘moved’ by a distance, the eccentricity e. What has happened to M, the 
bending moment? The bending moment still exists but now as P times e. 
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Suppose a beam is supported on a wall. Then, for the wall only to have uniform axial stress 
from the reaction of the beam, the beam must be supported exactly at the position of the centre 
of gravity for this uniform stress distribution. This is usually impossible in any real structure 
unless very precise precautions are taken. This means the reaction from the beam that the wall 
is supporting, will be applied to the wall at an eccentricity. So the wall is loaded by an axial 
load plus a bending moment.



What happens at the base of a garden wall or any other free-standing wall, when the wind 
blows? The axial force is caused by the weight of the wall itself and the bending moment is 
caused by the wind blowing horizontally on the wall.
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Here the eccentricity could be of any size depending on the relative sizes of the axial force 
caused by the weight of the wall and the moment caused by the wind. The left diagram show a 
cross-section with only compression stresses, whilst the right diagram shows compressive and 
tensile stresses. This means that the eccentricity is greater in the right diagram.



For rectangular sections the eccentricity must be kept within the middle third of the cross-
section if there is to be no tensile stress.
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This has very important consequences for structures made from structural materials such as 
masonry or mass concrete that cannot carry significant tensile stresses. For structures made 
from these materials, axial forces must be kept within the central part of the cross-section or 
the structure will crack or collapse. This is why brick chimneys and walls sometimes blow 
over in high winds.


