Università degli Studi "Mediterranea" di Reggio Calabria Dipartimento DICEAM – Fisica Matematica Anno Accademico 2017/2018 – Appello del 17.1.2018

La prova consta di 4 Quesiti a risposta chiusa e 4 Quesiti a risposta aperta; la durata della prova è di 2 ore e 30 minuti. Non è permesso consultare testi od appunti, al di fuori del manabile di Matematica. Per i quesiti a risposta chiusa, la risposta a ciascuno di essi va scelta esclusivamente tra quelle già date nel testo, con una X sul numeretto relativo. Una sola è la risposta corretta; qualora sia data più di una risposta allo stesso quesito, nessuna sarà considerata valida. Per i quesiti a risposta aperta, il cui punto i) è obbligatorio, lo studente dovrà ricavare ed indicare la risposta nei due fogli a quadretti allegati. I punteggi per ciascun quesito sono dichiarati sul testo. L'esito finale della prova è determinato dalla somma algebrica dei punteggi parziali.

Quesiti a risposta aperta

In un piano verticale Oxy un sistema materiale è costituito da un disco omogeneo di massa m e raggio R, che rotola senza strisciare lungo l'asse Ox, e da un punto materiale P di massa m libero di scorrere con attrito lungo l'asse Oy. Sul sistema agiscono:

- una molla di costante elastica h > 0 collegante il baricentro G del disco e il punto P; I)
- una forza costante F = F k applicata nel punto T appartenente al bordo del disco, con k versore perpendicolare al piano del disco:
 - III) un momento $\mathbf{M} = \mathbf{h}$ (GT×OH), agente sul disco, con H punto di contatto tra disco e asse Ox. Determinare:
 - la, o le, equazioni pure del moto del sistema materiale; (10 punti)
- ii) le reazioni vincolari agenti sul sistema all'istante iniziale quando il disco si trova nel piano Oxy con T sull'asse verticale Oy, con G avente velocità $\mathbf{v}_G = \mathbf{v}_0$ i, $\mathbf{v}_0 > 0$, mentre P si trova sul semiasse positivo Oy a distanza R da O e con velocità $\mathbf{v}_P = \mathbf{u}_0 \mathbf{j}$, $\mathbf{u}_0 < 0$, \mathbf{i} e \mathbf{j} versori degli assi, Ox e Oy, rispettivamente. (4 punti) Posto, quindi, mg = hR
 - iii) tutte le posizioni di equilibrio del sistema materiale; (7 punti)

COGNOME:

CORSO DI LAUREA:

	iv) le reazioni vincolari agenti sul sistema in una posizione di equilibrio a scelta. (4 punti)					
		Quesiti (og	gni risposta esatta vale du	e punti)		
	1. In un piano Oxy ruotante uniformemente intorno all'asse Oy, una lamina omogenea rettangolare è vincolata con un lato lungo a ruotare intorno all'asse fisso Oy. Il sistema di forze assifughe agenti sulla lamina è riducibile a:					
	i) zero;	ii) un vettore applicato;	iii) una coppia;	iv) un vettore e una cop	pia.	
ra			L che si muove con un ver e relative reazioni vincolari iii) tre;	tice vincolato ad una circon: : iv) quattro.	ferenza di	
ris	3. Data una sfera omogenea di raggio R, dire quanti assi centrali d'inerzia sono anche assi principali rispetto ad un punto posto sulla sua superficie:					
	i) zero;	ii) uno;	iii) due;	iv) tre.		
di	4. Dato un disco omogeneo vincolato a rotolare senza strisciare lungo una guida rettilinea, con H punt di contatto, la formula ottimale per il calcolo del momento della quantità di moto è:					
	i) <u>σ</u> _G ω ;	ii) <u>σ</u> _H ω ;	iii) OH x $M\mathbf{v}_{H}$;	iv) il 2° teorema di Koenig	5.	
	Ai sensi del D. L _§	gs. 30/06/2003, n. 196, si autor	izza la pubblicazione <i>on-line</i> in o	chiaro dell'esito della prova.		

NUMERO DI MATRICOLA:

FIRMA:

NOME:

Università degli Studi "Mediterranea" di Reggio Calabria Dipartimento DICEAM – Fisica Matematica Anno Accademico 2017/2018 – Appello del 31/01/2018

La prova consta di 4 Quesiti a risposta chiusa e 4 Quesiti a risposta aperta; la durata della prova è di 2 ore e 30 minuti. Non è permesso consultare testi od appunti, al di fuori del manabile di Matematica. Per i quesiti a risposta chiusa, la risposta a ciascuno di essi va scelta esclusivamente tra quelle già date nel testo, con una X sul numeretto relativo. Una sola è la risposta corretta; qualora sia data più di una risposta allo stesso quesito, nessuna sarà considerata valida. Per i quesiti a risposta aperta, il cui punto i) è obbligatorio, lo studente dovrà ricavare ed indicare la risposta nei due fogli a quadretti allegati. I punteggi per ciascun quesito sono dichiarati sul testo. L'esito finale della prova è determinato dalla somma algebrica dei punteggi parziali.

Quesiti a risposta aperta

Un punto materiale Q di massa m è vincolato a muoversi nel piano orizzontale Oxy sulla circonferenza di centro O e raggio R. Un altro punto materiale P di massa m si muove con attrito lungo l'asse verticale Oz, collegato al punto Q da una molla di costante elastica h>0. Sul punto Q, inoltre, agiscono una molla di costante elastica k > 0 e centro l'origine degli assi, e una forza repulsiva F = kQ'Q essendo Q' la proiezione di Q sull'asse Ox. Supponendo il sistema ruotante uniformemente intorno all'asse Oz con velocità angolare costante ω , determinare:

- i) la, o le, equazioni pure del moto del sistema materiale; (8 punti)
- ii) le reazioni vincolari agenti sul sistema materiale all'istante iniziale quando il punto materiale Q si trova

nel punto $T = (R, 0)$	(0) con velocità $\underline{v}_{Q}(0) = u$	$_{0}\hat{\mathbf{j}},\mathbf{u}_{0} > 0,\hat{\mathbf{j}}$ versore de	ell'asse Oy, mentre il punto materiale	e P	
dell'asse Oz. (4 pur Nell'ipotesi che a iii) tutte le posizio	nti) nche il punto P si muova sen oni di equilibrio del sistema 1	za attrito, calcolare: nateriale studiandone l	$\dot{\mathbf{x}} \underline{\mathbf{v}}_P(0) = \mathbf{v}_0 \hat{\mathbf{k}}, \mathbf{v}_0 < 0 \text{ e } \hat{\mathbf{k}} \text{ verse}$ a stabilità; (7 punti) prio stabile a scelta. (3 punti)	ore	
	Quesiti a risposta ch	niusa del valore di 2 p	unti ciascuno		
1. Data un sistema i) zero	a di vettori applicati piani a r ii) un vettore applicato	•			
	nferenza omogenea avente petto ad un punto appartener ii) due		dire quanti assi centrali d'inerzia so nferenza ed esterno ad essa: iv) nessuno	ono	
quale formula ottim		energia cinetica totale (rrere lungo l'asse orizzontale Ox. D (G = baricentro del sistema): iv) $\frac{1}{2} m_P v_P^2 + \frac{1}{2} m_Q v_Q^2$)ire	
4. Dato un parallelepipedo rettangolo omogeneo vincolato per un suo spigolo all'asse fisso orizzontale Ox della terna di riferimento Oxyz. Supponendo la terna ruotante uniformemente con velocità angolare costante ω attorno all'asse Oy, dire quale formula ottimale usereste per calcolare il potenziale assifugo (Ix, Iy = momenti d'inerzia rispetto all'asse indicato, M = massa totale, G = baricentro, G' e G" proiezioni di G sull'asse Ox e Oy, rispettivamente): i) $\frac{1}{2}$ M ω^2 G'G ² ii) $\frac{1}{2}$ I $_x\omega^2$ iii) $\frac{1}{2}$ M ω^2 G'G ² iv) $\frac{1}{2}$ I $_y\omega^2$					
, , ,	30/06/2003, n. 196, si autorizza la				
COGNOME:	NOME:		NUMERO DI MATRICOLA:		
CORSO D	DI LAUREA:		FIRMA:		

Università degli Studi "**Mediterranea**" di Reggio Calabria Dipartimento DICEAM – **Fisica Matematica** Anno Accademico 2017/2018 – Appello del 21.2.2018

La prova consta di 4 Quesiti a risposta chiusa e 4 Quesiti a risposta aperta; la durata della prova è di 2 ore e 30 minuti. Non è permesso consultare testi od appunti, al di fuori del manabile di Matematica. Per i quesiti a risposta chiusa, la risposta a ciascuno di essi va scelta esclusivamente tra quelle già date nel testo, con una X sul numeretto relativo. Una sola è la risposta corretta; qualora sia data più di una risposta allo stesso quesito, nessuna sarà considerata valida. Per i quesiti a risposta aperta, il cui punto i) è obbligatorio, lo studente dovrà ricavare ed indicare la risposta nei due fogli a quadretti allegati. I punteggi per ciascun quesito sono dichiarati sul testo. L'esito finale della prova è determinato dalla somma algebrica dei punteggi parziali.

Quesiti a risposta aperta

Una lamina quadrata OABC di lato L, avente densità di massa nel generico punto P data da $\mu(P)=2m/L^3|P'P|$, con P' proiezione di P sul lato OC, è vincolata con il lato OC all'asse verticale fisso liscio Oy di un sistema di riferimento Oxyz. Sul sistema materiale agiscono:

- I) una molla di costante elastica h > 0 applicata nel vertice B della lamina e centro il punto Q di coordinate (2L, 2L, 0);
 - II) un momento $\mathbf{M} = 2h$ (OA×OA'), con A' proiezione di A sull'asse Ox. Determinare:
 - i) la, o le, equazioni pure del moto del sistema materiale; (10 punti)
- i) ii) le reazioni vincolari agenti sul sistema all'istante iniziale quando la lamina è disposta nel piano Oxy con il punto A avente velocità $\mathbf{v}_A = \mathbf{u}_0 \, \mathbf{k}$, $\mathbf{u}_0 > 0 \, \mathbf{e} \, \mathbf{k}$ versore dell'asse Oz; (4 **punti**)
 - iii) tutte le posizioni di equilibrio del sistema materiale, studiandone la stabilità; (7 punti)
 - iv) le reazioni vincolari agenti sul sistema in una posizione di equilibrio stabile. (4 punti)

,	C	1	` 			
Quesiti (ogni risposta esatta vale due punti)						
1. Dato un s i) zero;	1.1	ati con invariante scalare non r ato; iii) una coppia;	nullo, esso è riducibile a: iv) un vettore e una coppia.			
	•		rchio, dire quanti assi centrali lel vertice sul diametro di base: iv) tre.			
	lamina omogenea rettan nte sono le componenti (ii) tre;	_	qualsiasi ad un asse scorrevole iv) cinque.			
 4. Dato un corpo omogeneo di forma conica e di massa M, vincolato a muoversi con il vertice Q fisso, dire qual è la formula ottimale per il calcolo dell'energia cinetica (G = baricentro, ω = velocità angolare): i) ½ ω·(σ_Gω); ii) ½ ω·(σ_Oω); iii) il 3° teorema di Konig; iv) ½ Mv_G² + ½ ω·(σ_Gω). 						
Ai sensi del D. Lgs. 30/06/2003, n. 196, si autorizza la pubblicazione <i>on-line</i> in chiaro dell'esito della prova.						
COGNOME:		NOME:	NUMERO DI MATRICOLA:			
CORSO DI LA	AUREA:		FIRMA:			

Università degli Studi "Mediterranea" di Reggio Calabria Dipartimento DICEAM – Fisica Matematica Anno Accademico 2017/2018 – Appello del 4/7/2018

La prova consta di 4 Quesiti a risposta chiusa e 4 Quesiti a risposta aperta; la durata della prova è di 2 ore e 30 minuti. Non è permesso consultare testi od appunti, al di fuori del manabile di Matematica. Per i quesiti a risposta chiusa, la risposta a ciascuno di essi va scelta esclusivamente tra quelle già date nel testo, con una X sul numeretto relativo. Una sola è la risposta corretta; qualora sia data più di una risposta allo stesso quesito, nessuna sarà considerata valida. Per i quesiti a risposta aperta, il cui punto i) è obbligatorio, lo studente dovrà ricavare ed indicare la risposta nei due fogli a quadretti allegati. I punteggi per ciascun quesito sono dichiarati sul testo. L'esito finale della prova è determinato dalla somma algebrica dei punteggi parziali.

Quesiti a risposta aperta

Nel piano verticale Oxy, un'asta omogenea AB di lunghezza L e massa 2m è vincolata con l'estremo A ad un punto posto a distanza L da O dell'asse verticale fisso liscio Oy. Una molla di costante elastica h > 0 collega l'estremo B ad un punto Q posto sull'asse Oy a distanza 2L da O. Inoltre, sul sistema, agisce una coppia di forze di momento M=(2h/3)(OAxAB).

Supponendo il piano Oxy ruotante uniformemente intorno all'asse Oy con velocità angolare ω, determinare:

- i) la, o le, equazioni pure del moto; (9 punti);
- ii) le reazioni vincolari all'istante iniziale, quando l'asta è disposta nel primo quadrante e parallela Ox con l'estremo B avente velocità $\mathbf{v}_{\rm B} = \mathbf{u}_0 \mathbf{j}$, $\mathbf{u}_0 > 0$ e \mathbf{j} versore dell'asse Oy. (4 punti) Inoltre, posto $hL = mg = m\omega^2 L$,
- iii) tutte le posizioni di equilibrio del sistema, studiandone la stabilità; (7 punti)
- iv) le reazioni vincolari in una posizione di equilibrio stabile. (3 punti)

Quesiti a risposta chiusa del valore di due punti ciascuno

•	Quesiti a rispos	sta ciliusa dei valore di	due punti cia	scuno	
1. Dato un cono omogeneo, dire quanti assi centrali sono principali rispetto al suo vertice:					
i) zero	ii) uno	iii)	due	iv) tre	
2. Data un'asta rigida AB omogenea, i cui estremi sono vincolati a scorrere, rispettivamente, A sull'asse Oy, e B sull'asse Ox di un sistema Oxy, dire quante sono le componenti delle reazioni vincolari:					
i) due	ii) tre	111)	quattro	iv) cinque	
3. Dato un disco vincolato a rotolare senza strisciare nel piano Oxy lungo la guida rettilinea Ox, dire qual è la formula ottimale per il calcolo dell'energia cinetica (H punto di contatto tra disco e guida, G baricentro del disco):					
i) $\frac{1}{2}$ $I_{Hz}\omega^2$	ii) $\frac{1}{2}$ I_{Gz} ω^2	iii) $\frac{1}{2}$ $Mv_G^2 + \frac{1}{2} I_{Gz} \omega^2$		iv) il 3° teorema di Koenig	
4. Nello studio della s Hessiana:	stabilità, una po	osizione d'equilibrio è d	detta stabile se	il potenziale ha la matrice	
i) con tutti gli autovalo iii) con tutti gli auto	•		,	eterminante negativo leterminante positivo	
Ai sensi del D. Lgs. 30/06/2003, n. 196, si autorizza la pubblicazione online in chiaro dell'esito della prova.					
COGNOME:		NOME:	NUMER	O DI MATRICOLA:	
CORSO DI LAUREA :			FIRMA:		